Theory and Applications of the Poincaré Group:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1986
|
Schriftenreihe: | Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application
17 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work |
Beschreibung: | 1 Online-Ressource (XV, 331 p) |
ISBN: | 9789400945586 9789401085267 |
DOI: | 10.1007/978-94-009-4558-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042415158 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1986 |||| o||u| ||||||eng d | ||
020 | |a 9789400945586 |c Online |9 978-94-009-4558-6 | ||
020 | |a 9789401085267 |c Print |9 978-94-010-8526-7 | ||
024 | 7 | |a 10.1007/978-94-009-4558-6 |2 doi | |
035 | |a (OCoLC)863759567 | ||
035 | |a (DE-599)BVBBV042415158 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Kim, Y. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theory and Applications of the Poincaré Group |c by Y. S. Kim, Marilyn E. Noz |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1986 | |
300 | |a 1 Online-Ressource (XV, 331 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |v 17 | |
500 | |a Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work | ||
650 | 4 | |a Physics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 0 | 7 | |a Poincaré-Reihe |0 (DE-588)4174967-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elementarteilchenphysik |0 (DE-588)4014414-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hadron |0 (DE-588)4022771-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Oszillator |0 (DE-588)4132814-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fundamentalgruppe |0 (DE-588)4155638-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Harmonischer Oszillator |0 (DE-588)4159128-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | 1 | |a Harmonischer Oszillator |0 (DE-588)4159128-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elementarteilchenphysik |0 (DE-588)4014414-8 |D s |
689 | 1 | 1 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 2 | 1 | |a Poincaré-Reihe |0 (DE-588)4174967-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Fundamentalgruppe |0 (DE-588)4155638-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Oszillator |0 (DE-588)4132814-0 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Hadron |0 (DE-588)4022771-6 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
700 | 1 | |a Noz, Marilyn E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-009-4558-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850651 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153081862029312 |
---|---|
any_adam_object | |
author | Kim, Y. S. |
author_facet | Kim, Y. S. |
author_role | aut |
author_sort | Kim, Y. S. |
author_variant | y s k ys ysk |
building | Verbundindex |
bvnumber | BV042415158 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863759567 (DE-599)BVBBV042415158 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-94-009-4558-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04657nmm a2200757zcb4500</leader><controlfield tag="001">BV042415158</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1986 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789400945586</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-009-4558-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401085267</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-8526-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-009-4558-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863759567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042415158</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kim, Y. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory and Applications of the Poincaré Group</subfield><subfield code="c">by Y. S. Kim, Marilyn E. Noz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 331 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application</subfield><subfield code="v">17</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poincaré-Reihe</subfield><subfield code="0">(DE-588)4174967-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elementarteilchenphysik</subfield><subfield code="0">(DE-588)4014414-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hadron</subfield><subfield code="0">(DE-588)4022771-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oszillator</subfield><subfield code="0">(DE-588)4132814-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fundamentalgruppe</subfield><subfield code="0">(DE-588)4155638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonischer Oszillator</subfield><subfield code="0">(DE-588)4159128-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Harmonischer Oszillator</subfield><subfield code="0">(DE-588)4159128-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elementarteilchenphysik</subfield><subfield code="0">(DE-588)4014414-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Poincaré-Reihe</subfield><subfield code="0">(DE-588)4174967-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Fundamentalgruppe</subfield><subfield code="0">(DE-588)4155638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Oszillator</subfield><subfield code="0">(DE-588)4132814-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Hadron</subfield><subfield code="0">(DE-588)4022771-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Noz, Marilyn E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-009-4558-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850651</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042415158 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:56Z |
institution | BVB |
isbn | 9789400945586 9789401085267 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850651 |
oclc_num | 863759567 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 331 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application |
spelling | Kim, Y. S. Verfasser aut Theory and Applications of the Poincaré Group by Y. S. Kim, Marilyn E. Noz Dordrecht Springer Netherlands 1986 1 Online-Ressource (XV, 331 p) txt rdacontent c rdamedia cr rdacarrier Fundamental Theories of Physics, A New International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application 17 Special relativity and quantum mechanics, formulated early in the twentieth century, are the two most important scientific languages and are likely to remain so for many years to come. In the 1920's, when quantum mechanics was developed, the most pressing theoretical problem was how to make it consistent with special relativity. In the 1980's, this is still the most pressing problem. The only difference is that the situation is more urgent now than before, because of the significant quantity of experimental data which need to be explained in terms of both quantum mechanics and special relativity. In unifying the concepts and algorithms of quantum mechanics and special relativity, it is important to realize that the underlying scientific language for both disciplines is that of group theory. The role of group theory in quantum mechanics is well known. The same is true for special relativity. Therefore, the most effective approach to the problem of unifying these two important theories is to develop a group theory which can accommodate both special relativity and quantum mechanics. As is well known, Eugene P. Wigner is one of the pioneers in developing group theoretical approaches to relativistic quantum mechanics. His 1939 paper on the inhomogeneous Lorentz group laid the foundation for this important research line. It is generally agreed that this paper was somewhat ahead of its time in 1939, and that contemporary physicists must continue to make real efforts to appreciate fully the content of this classic work Physics Group theory Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Poincaré-Reihe (DE-588)4174967-4 gnd rswk-swf Elementarteilchenphysik (DE-588)4014414-8 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 gnd rswk-swf Hadron (DE-588)4022771-6 gnd rswk-swf Oszillator (DE-588)4132814-0 gnd rswk-swf Fundamentalgruppe (DE-588)4155638-0 gnd rswk-swf Harmonischer Oszillator (DE-588)4159128-8 gnd rswk-swf Gruppentheorie (DE-588)4072157-7 s Harmonischer Oszillator (DE-588)4159128-8 s 1\p DE-604 Elementarteilchenphysik (DE-588)4014414-8 s 2\p DE-604 Poincaré-Reihe (DE-588)4174967-4 s 3\p DE-604 Fundamentalgruppe (DE-588)4155638-0 s 4\p DE-604 Oszillator (DE-588)4132814-0 s 5\p DE-604 Hadron (DE-588)4022771-6 s 6\p DE-604 Noz, Marilyn E. Sonstige oth https://doi.org/10.1007/978-94-009-4558-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kim, Y. S. Theory and Applications of the Poincaré Group Physics Group theory Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Poincaré-Reihe (DE-588)4174967-4 gnd Elementarteilchenphysik (DE-588)4014414-8 gnd Gruppentheorie (DE-588)4072157-7 gnd Hadron (DE-588)4022771-6 gnd Oszillator (DE-588)4132814-0 gnd Fundamentalgruppe (DE-588)4155638-0 gnd Harmonischer Oszillator (DE-588)4159128-8 gnd |
subject_GND | (DE-588)4174967-4 (DE-588)4014414-8 (DE-588)4072157-7 (DE-588)4022771-6 (DE-588)4132814-0 (DE-588)4155638-0 (DE-588)4159128-8 |
title | Theory and Applications of the Poincaré Group |
title_auth | Theory and Applications of the Poincaré Group |
title_exact_search | Theory and Applications of the Poincaré Group |
title_full | Theory and Applications of the Poincaré Group by Y. S. Kim, Marilyn E. Noz |
title_fullStr | Theory and Applications of the Poincaré Group by Y. S. Kim, Marilyn E. Noz |
title_full_unstemmed | Theory and Applications of the Poincaré Group by Y. S. Kim, Marilyn E. Noz |
title_short | Theory and Applications of the Poincaré Group |
title_sort | theory and applications of the poincare group |
topic | Physics Group theory Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Poincaré-Reihe (DE-588)4174967-4 gnd Elementarteilchenphysik (DE-588)4014414-8 gnd Gruppentheorie (DE-588)4072157-7 gnd Hadron (DE-588)4022771-6 gnd Oszillator (DE-588)4132814-0 gnd Fundamentalgruppe (DE-588)4155638-0 gnd Harmonischer Oszillator (DE-588)4159128-8 gnd |
topic_facet | Physics Group theory Theoretical, Mathematical and Computational Physics Group Theory and Generalizations Poincaré-Reihe Elementarteilchenphysik Gruppentheorie Hadron Oszillator Fundamentalgruppe Harmonischer Oszillator |
url | https://doi.org/10.1007/978-94-009-4558-6 |
work_keys_str_mv | AT kimys theoryandapplicationsofthepoincaregroup AT nozmarilyne theoryandapplicationsofthepoincaregroup |