Nonlinear Stability and Bifurcation Theory: An Introduction for Engineers and Applied Scientists
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Vienna
Springer Vienna
1991
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner |
Beschreibung: | 1 Online-Ressource (XI, 407p. 141 illus) |
ISBN: | 9783709191682 9783211822920 |
DOI: | 10.1007/978-3-7091-9168-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414823 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1991 |||| o||u| ||||||eng d | ||
020 | |a 9783709191682 |c Online |9 978-3-7091-9168-2 | ||
020 | |a 9783211822920 |c Print |9 978-3-211-82292-0 | ||
024 | 7 | |a 10.1007/978-3-7091-9168-2 |2 doi | |
035 | |a (OCoLC)863875824 | ||
035 | |a (DE-599)BVBBV042414823 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Troger, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nonlinear Stability and Bifurcation Theory |b An Introduction for Engineers and Applied Scientists |c by Hans Troger, Alois Steindl |
264 | 1 | |a Vienna |b Springer Vienna |c 1991 | |
300 | |a 1 Online-Ressource (XI, 407p. 141 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Civil engineering | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Civil Engineering | |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Stabilitätstheorie |0 (DE-588)4171761-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtlineare Stabilitätstheorie |0 (DE-588)4171761-2 |D s |
689 | 1 | 1 | |a Verzweigung |g Mathematik |0 (DE-588)4078889-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Steindl, Alois |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-7091-9168-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027850316 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153081076645888 |
---|---|
any_adam_object | |
author | Troger, Hans |
author_facet | Troger, Hans |
author_role | aut |
author_sort | Troger, Hans |
author_variant | h t ht |
building | Verbundindex |
bvnumber | BV042414823 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863875824 (DE-599)BVBBV042414823 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-7091-9168-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03349nmm a2200565zc 4500</leader><controlfield tag="001">BV042414823</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783709191682</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-7091-9168-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783211822920</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-211-82292-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-7091-9168-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863875824</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Troger, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Stability and Bifurcation Theory</subfield><subfield code="b">An Introduction for Engineers and Applied Scientists</subfield><subfield code="c">by Hans Troger, Alois Steindl</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Vienna</subfield><subfield code="b">Springer Vienna</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 407p. 141 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Stabilitätstheorie</subfield><subfield code="0">(DE-588)4171761-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare Stabilitätstheorie</subfield><subfield code="0">(DE-588)4171761-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Verzweigung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4078889-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steindl, Alois</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-7091-9168-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027850316</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042414823 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:56Z |
institution | BVB |
isbn | 9783709191682 9783211822920 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027850316 |
oclc_num | 863875824 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 407p. 141 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer Vienna |
record_format | marc |
spelling | Troger, Hans Verfasser aut Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists by Hans Troger, Alois Steindl Vienna Springer Vienna 1991 1 Online-Ressource (XI, 407p. 141 illus) txt rdacontent c rdamedia cr rdacarrier Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner Physics Mechanics Engineering mathematics Civil engineering Appl.Mathematics/Computational Methods of Engineering Civil Engineering Stabilität (DE-588)4056693-6 gnd rswk-swf Verzweigung Mathematik (DE-588)4078889-1 gnd rswk-swf Nichtlineare Stabilitätstheorie (DE-588)4171761-2 gnd rswk-swf Stabilität (DE-588)4056693-6 s Verzweigung Mathematik (DE-588)4078889-1 s 1\p DE-604 Nichtlineare Stabilitätstheorie (DE-588)4171761-2 s 2\p DE-604 Steindl, Alois Sonstige oth https://doi.org/10.1007/978-3-7091-9168-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Troger, Hans Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists Physics Mechanics Engineering mathematics Civil engineering Appl.Mathematics/Computational Methods of Engineering Civil Engineering Stabilität (DE-588)4056693-6 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Nichtlineare Stabilitätstheorie (DE-588)4171761-2 gnd |
subject_GND | (DE-588)4056693-6 (DE-588)4078889-1 (DE-588)4171761-2 |
title | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists |
title_auth | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists |
title_exact_search | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists |
title_full | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists by Hans Troger, Alois Steindl |
title_fullStr | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists by Hans Troger, Alois Steindl |
title_full_unstemmed | Nonlinear Stability and Bifurcation Theory An Introduction for Engineers and Applied Scientists by Hans Troger, Alois Steindl |
title_short | Nonlinear Stability and Bifurcation Theory |
title_sort | nonlinear stability and bifurcation theory an introduction for engineers and applied scientists |
title_sub | An Introduction for Engineers and Applied Scientists |
topic | Physics Mechanics Engineering mathematics Civil engineering Appl.Mathematics/Computational Methods of Engineering Civil Engineering Stabilität (DE-588)4056693-6 gnd Verzweigung Mathematik (DE-588)4078889-1 gnd Nichtlineare Stabilitätstheorie (DE-588)4171761-2 gnd |
topic_facet | Physics Mechanics Engineering mathematics Civil engineering Appl.Mathematics/Computational Methods of Engineering Civil Engineering Stabilität Verzweigung Mathematik Nichtlineare Stabilitätstheorie |
url | https://doi.org/10.1007/978-3-7091-9168-2 |
work_keys_str_mv | AT trogerhans nonlinearstabilityandbifurcationtheoryanintroductionforengineersandappliedscientists AT steindlalois nonlinearstabilityandbifurcationtheoryanintroductionforengineersandappliedscientists |