New Directions in Statistical Physics: Econophysics, Bioinformatics, and Pattern Recognition
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked. This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher |
Beschreibung: | 1 Online-Ressource (XVIII, 363 p) |
ISBN: | 9783662089682 9783642077395 |
DOI: | 10.1007/978-3-662-08968-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414491 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783662089682 |c Online |9 978-3-662-08968-2 | ||
020 | |a 9783642077395 |c Print |9 978-3-642-07739-5 | ||
024 | 7 | |a 10.1007/978-3-662-08968-2 |2 doi | |
035 | |a (OCoLC)863897777 | ||
035 | |a (DE-599)BVBBV042414491 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Wille, Luc T. |e Verfasser |4 aut | |
245 | 1 | 0 | |a New Directions in Statistical Physics |b Econophysics, Bioinformatics, and Pattern Recognition |c edited by Luc T. Wille |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XVIII, 363 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked. This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computer vision | |
650 | 4 | |a Economics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Image Processing and Computer Vision | |
650 | 4 | |a Biophysics and Biological Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Economic Theory | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-08968-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849984 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153080188502016 |
---|---|
any_adam_object | |
author | Wille, Luc T. |
author_facet | Wille, Luc T. |
author_role | aut |
author_sort | Wille, Luc T. |
author_variant | l t w lt ltw |
building | Verbundindex |
bvnumber | BV042414491 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863897777 (DE-599)BVBBV042414491 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-662-08968-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02931nmm a2200529zc 4500</leader><controlfield tag="001">BV042414491</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662089682</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-08968-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642077395</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07739-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-08968-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863897777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wille, Luc T.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New Directions in Statistical Physics</subfield><subfield code="b">Econophysics, Bioinformatics, and Pattern Recognition</subfield><subfield code="c">edited by Luc T. Wille</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 363 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked. This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image Processing and Computer Vision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biophysics and Biological Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-08968-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849984</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042414491 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:55Z |
institution | BVB |
isbn | 9783662089682 9783642077395 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849984 |
oclc_num | 863897777 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVIII, 363 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Wille, Luc T. Verfasser aut New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition edited by Luc T. Wille Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XVIII, 363 p) txt rdacontent c rdamedia cr rdacarrier Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked. This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher Physics Computer vision Economics Theoretical, Mathematical and Computational Physics Image Processing and Computer Vision Biophysics and Biological Physics Statistical Physics, Dynamical Systems and Complexity Economic Theory Wirtschaft Statistische Physik (DE-588)4057000-9 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Statistische Physik (DE-588)4057000-9 s 2\p DE-604 https://doi.org/10.1007/978-3-662-08968-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Wille, Luc T. New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition Physics Computer vision Economics Theoretical, Mathematical and Computational Physics Image Processing and Computer Vision Biophysics and Biological Physics Statistical Physics, Dynamical Systems and Complexity Economic Theory Wirtschaft Statistische Physik (DE-588)4057000-9 gnd |
subject_GND | (DE-588)4057000-9 (DE-588)4143413-4 |
title | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition |
title_auth | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition |
title_exact_search | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition |
title_full | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition edited by Luc T. Wille |
title_fullStr | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition edited by Luc T. Wille |
title_full_unstemmed | New Directions in Statistical Physics Econophysics, Bioinformatics, and Pattern Recognition edited by Luc T. Wille |
title_short | New Directions in Statistical Physics |
title_sort | new directions in statistical physics econophysics bioinformatics and pattern recognition |
title_sub | Econophysics, Bioinformatics, and Pattern Recognition |
topic | Physics Computer vision Economics Theoretical, Mathematical and Computational Physics Image Processing and Computer Vision Biophysics and Biological Physics Statistical Physics, Dynamical Systems and Complexity Economic Theory Wirtschaft Statistische Physik (DE-588)4057000-9 gnd |
topic_facet | Physics Computer vision Economics Theoretical, Mathematical and Computational Physics Image Processing and Computer Vision Biophysics and Biological Physics Statistical Physics, Dynamical Systems and Complexity Economic Theory Wirtschaft Statistische Physik Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-662-08968-2 |
work_keys_str_mv | AT willeluct newdirectionsinstatisticalphysicseconophysicsbioinformaticsandpatternrecognition |