Bayesian Inference: Parameter Estimation and Decisions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Advanced Texts in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The book provides a generalization of Gaussian error intervals to situations where the data follow non-Gaussian distributions. This usually occurs in frontier science, where the observed parameter is just above background or the histogram of multiparametric data contains empty bins. Then the validity of a theory cannot be decided by the chi-squared-criterion, but this long-standing problem is solved here. The book is based on Bayes' theorem, symmetry and differential geometry. In addition to solutions of practical problems, the text provides an epistemic insight: The logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. However, no knowledge of quantum mechanics is required. The text, examples and exercises are written at an introductory level |
Beschreibung: | 1 Online-Ressource (XIII, 263 p) |
ISBN: | 9783662060063 9783642055775 |
ISSN: | 1439-2674 |
DOI: | 10.1007/978-3-662-06006-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414451 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783662060063 |c Online |9 978-3-662-06006-3 | ||
020 | |a 9783642055775 |c Print |9 978-3-642-05577-5 | ||
024 | 7 | |a 10.1007/978-3-662-06006-3 |2 doi | |
035 | |a (OCoLC)863903996 | ||
035 | |a (DE-599)BVBBV042414451 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621.3 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Harney, Hanns L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bayesian Inference |b Parameter Estimation and Decisions |c by Hanns L. Harney |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 263 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Texts in Physics |x 1439-2674 | |
500 | |a The book provides a generalization of Gaussian error intervals to situations where the data follow non-Gaussian distributions. This usually occurs in frontier science, where the observed parameter is just above background or the histogram of multiparametric data contains empty bins. Then the validity of a theory cannot be decided by the chi-squared-criterion, but this long-standing problem is solved here. The book is based on Bayes' theorem, symmetry and differential geometry. In addition to solutions of practical problems, the text provides an epistemic insight: The logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. However, no knowledge of quantum mechanics is required. The text, examples and exercises are written at an introductory level | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bayes-Inferenz |0 (DE-588)4648118-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06006-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849944 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153080079450112 |
---|---|
any_adam_object | |
author | Harney, Hanns L. |
author_facet | Harney, Hanns L. |
author_role | aut |
author_sort | Harney, Hanns L. |
author_variant | h l h hl hlh |
building | Verbundindex |
bvnumber | BV042414451 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863903996 (DE-599)BVBBV042414451 |
dewey-full | 621.3 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3 |
dewey-search | 621.3 |
dewey-sort | 3621.3 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1007/978-3-662-06006-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02694nmm a2200553zc 4500</leader><controlfield tag="001">BV042414451</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662060063</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06006-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642055775</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05577-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06006-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863903996</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414451</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harney, Hanns L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bayesian Inference</subfield><subfield code="b">Parameter Estimation and Decisions</subfield><subfield code="c">by Hanns L. Harney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 263 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Texts in Physics</subfield><subfield code="x">1439-2674</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book provides a generalization of Gaussian error intervals to situations where the data follow non-Gaussian distributions. This usually occurs in frontier science, where the observed parameter is just above background or the histogram of multiparametric data contains empty bins. Then the validity of a theory cannot be decided by the chi-squared-criterion, but this long-standing problem is solved here. The book is based on Bayes' theorem, symmetry and differential geometry. In addition to solutions of practical problems, the text provides an epistemic insight: The logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. However, no knowledge of quantum mechanics is required. The text, examples and exercises are written at an introductory level</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Inferenz</subfield><subfield code="0">(DE-588)4648118-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06006-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849944</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042414451 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:55Z |
institution | BVB |
isbn | 9783662060063 9783642055775 |
issn | 1439-2674 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849944 |
oclc_num | 863903996 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 263 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Advanced Texts in Physics |
spelling | Harney, Hanns L. Verfasser aut Bayesian Inference Parameter Estimation and Decisions by Hanns L. Harney Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XIII, 263 p) txt rdacontent c rdamedia cr rdacarrier Advanced Texts in Physics 1439-2674 The book provides a generalization of Gaussian error intervals to situations where the data follow non-Gaussian distributions. This usually occurs in frontier science, where the observed parameter is just above background or the histogram of multiparametric data contains empty bins. Then the validity of a theory cannot be decided by the chi-squared-criterion, but this long-standing problem is solved here. The book is based on Bayes' theorem, symmetry and differential geometry. In addition to solutions of practical problems, the text provides an epistemic insight: The logic of quantum mechanics is obtained as the logic of unbiased inference from counting data. However, no knowledge of quantum mechanics is required. The text, examples and exercises are written at an introductory level Physics Computer science / Mathematics Quantum theory Mathematical statistics Quantum Information Technology, Spintronics Quantum Physics Statistical Physics, Dynamical Systems and Complexity Statistical Theory and Methods Computational Mathematics and Numerical Analysis Informatik Mathematik Quantentheorie Bayes-Inferenz (DE-588)4648118-7 gnd rswk-swf Bayes-Inferenz (DE-588)4648118-7 s 1\p DE-604 https://doi.org/10.1007/978-3-662-06006-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Harney, Hanns L. Bayesian Inference Parameter Estimation and Decisions Physics Computer science / Mathematics Quantum theory Mathematical statistics Quantum Information Technology, Spintronics Quantum Physics Statistical Physics, Dynamical Systems and Complexity Statistical Theory and Methods Computational Mathematics and Numerical Analysis Informatik Mathematik Quantentheorie Bayes-Inferenz (DE-588)4648118-7 gnd |
subject_GND | (DE-588)4648118-7 |
title | Bayesian Inference Parameter Estimation and Decisions |
title_auth | Bayesian Inference Parameter Estimation and Decisions |
title_exact_search | Bayesian Inference Parameter Estimation and Decisions |
title_full | Bayesian Inference Parameter Estimation and Decisions by Hanns L. Harney |
title_fullStr | Bayesian Inference Parameter Estimation and Decisions by Hanns L. Harney |
title_full_unstemmed | Bayesian Inference Parameter Estimation and Decisions by Hanns L. Harney |
title_short | Bayesian Inference |
title_sort | bayesian inference parameter estimation and decisions |
title_sub | Parameter Estimation and Decisions |
topic | Physics Computer science / Mathematics Quantum theory Mathematical statistics Quantum Information Technology, Spintronics Quantum Physics Statistical Physics, Dynamical Systems and Complexity Statistical Theory and Methods Computational Mathematics and Numerical Analysis Informatik Mathematik Quantentheorie Bayes-Inferenz (DE-588)4648118-7 gnd |
topic_facet | Physics Computer science / Mathematics Quantum theory Mathematical statistics Quantum Information Technology, Spintronics Quantum Physics Statistical Physics, Dynamical Systems and Complexity Statistical Theory and Methods Computational Mathematics and Numerical Analysis Informatik Mathematik Quantentheorie Bayes-Inferenz |
url | https://doi.org/10.1007/978-3-662-06006-3 |
work_keys_str_mv | AT harneyhannsl bayesianinferenceparameterestimationanddecisions |