Higher-Order Numerical Methods for Transient Wave Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2002
|
Schriftenreihe: | Scientific Computation
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given |
Beschreibung: | 1 Online-Ressource (XVIII, 349 p) |
ISBN: | 9783662048238 9783642074820 |
ISSN: | 1434-8322 |
DOI: | 10.1007/978-3-662-04823-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414379 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783662048238 |c Online |9 978-3-662-04823-8 | ||
020 | |a 9783642074820 |c Print |9 978-3-642-07482-0 | ||
024 | 7 | |a 10.1007/978-3-662-04823-8 |2 doi | |
035 | |a (OCoLC)864002520 | ||
035 | |a (DE-599)BVBBV042414379 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Cohen, Gary C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Higher-Order Numerical Methods for Transient Wave Equations |c by Gary C. Cohen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2002 | |
300 | |a 1 Online-Ressource (XVIII, 349 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Scientific Computation |x 1434-8322 | |
500 | |a Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Optics and Electrodynamics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellengleichung |0 (DE-588)4065315-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Wellengleichung |0 (DE-588)4065315-8 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04823-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849872 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153079935795200 |
---|---|
any_adam_object | |
author | Cohen, Gary C. |
author_facet | Cohen, Gary C. |
author_role | aut |
author_sort | Cohen, Gary C. |
author_variant | g c c gc gcc |
building | Verbundindex |
bvnumber | BV042414379 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)864002520 (DE-599)BVBBV042414379 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-662-04823-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03293nmm a2200625zc 4500</leader><controlfield tag="001">BV042414379</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662048238</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04823-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642074820</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07482-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04823-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864002520</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohen, Gary C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher-Order Numerical Methods for Transient Wave Equations</subfield><subfield code="c">by Gary C. Cohen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 349 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific Computation</subfield><subfield code="x">1434-8322</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optics and Electrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellengleichung</subfield><subfield code="0">(DE-588)4065315-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04823-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849872</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042414379 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:55Z |
institution | BVB |
isbn | 9783662048238 9783642074820 |
issn | 1434-8322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849872 |
oclc_num | 864002520 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVIII, 349 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Scientific Computation |
spelling | Cohen, Gary C. Verfasser aut Higher-Order Numerical Methods for Transient Wave Equations by Gary C. Cohen Berlin, Heidelberg Springer Berlin Heidelberg 2002 1 Online-Ressource (XVIII, 349 p) txt rdacontent c rdamedia cr rdacarrier Scientific Computation 1434-8322 Solving efficiently the wave equations involved in modeling acoustic, elastic or electromagnetic wave propagation remains a challenge both for research and industry. To attack the problems coming from the propagative character of the solution, the author constructs higher-order numerical methods to reduce the size of the meshes, and consequently the time and space stepping, dramatically improving storage and computing times. This book surveys higher-order finite difference methods and develops various mass-lumped finite (also called spectral) element methods for the transient wave equations, and presents the most efficient methods, respecting both accuracy and stability for each sort of problem. A central role is played by the notion of the dispersion relation for analyzing the methods. The last chapter is devoted to unbounded domains which are modeled using perfectly matched layer (PML) techniques. Numerical examples are given Physics Computer science / Mathematics Acoustics Engineering mathematics Numerical and Computational Physics Computational Mathematics and Numerical Analysis Optics and Electrodynamics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Wellengleichung (DE-588)4065315-8 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Wellengleichung (DE-588)4065315-8 s Numerisches Verfahren (DE-588)4128130-5 s 2\p DE-604 Finite-Elemente-Methode (DE-588)4017233-8 s 3\p DE-604 https://doi.org/10.1007/978-3-662-04823-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohen, Gary C. Higher-Order Numerical Methods for Transient Wave Equations Physics Computer science / Mathematics Acoustics Engineering mathematics Numerical and Computational Physics Computational Mathematics and Numerical Analysis Optics and Electrodynamics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Wellengleichung (DE-588)4065315-8 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4017233-8 (DE-588)4065315-8 (DE-588)4123623-3 |
title | Higher-Order Numerical Methods for Transient Wave Equations |
title_auth | Higher-Order Numerical Methods for Transient Wave Equations |
title_exact_search | Higher-Order Numerical Methods for Transient Wave Equations |
title_full | Higher-Order Numerical Methods for Transient Wave Equations by Gary C. Cohen |
title_fullStr | Higher-Order Numerical Methods for Transient Wave Equations by Gary C. Cohen |
title_full_unstemmed | Higher-Order Numerical Methods for Transient Wave Equations by Gary C. Cohen |
title_short | Higher-Order Numerical Methods for Transient Wave Equations |
title_sort | higher order numerical methods for transient wave equations |
topic | Physics Computer science / Mathematics Acoustics Engineering mathematics Numerical and Computational Physics Computational Mathematics and Numerical Analysis Optics and Electrodynamics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Wellengleichung (DE-588)4065315-8 gnd |
topic_facet | Physics Computer science / Mathematics Acoustics Engineering mathematics Numerical and Computational Physics Computational Mathematics and Numerical Analysis Optics and Electrodynamics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Numerisches Verfahren Finite-Elemente-Methode Wellengleichung Lehrbuch |
url | https://doi.org/10.1007/978-3-662-04823-8 |
work_keys_str_mv | AT cohengaryc higherordernumericalmethodsfortransientwaveequations |