Contact, adhesion and rupture of elastic solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer Series in Solid-State Sciences
130 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In 1970 an investigation into rubber friction, sponsored by a manufacturer of automobile windscreen wipers, was being carried out at the Cavendish Laboratory in Cambridge, England. When a smooth spherical slider of soft rubber was placed in contact with flat glass or perspex, the compliance of the rubber enabled it to conform to any slight roughness of the two surfaces such that perfect contact was obtained. In these circumstances the surfaces were found to adhere: under load the contact area exceeded that predicted by the Hertz theory of elastic contact, a contact area of finite size was seen at zero load and a tensile force was required to pull the surfaces apart. In an attempt to model these observations the JKR theory (Johnson, Kendall and Roberts, 1971) was born. At the same time, working in Moscow on adhesion of particles in colloidal suspension, Derjaguin, Muller and Toporov had developed a different ("DMT") theory of the adhesion of elastic spheres (DMT, 1975). At first it was thought that these theories were incompatible, until Tabor suggested that each applied to opposite ends of the spectrum of a non-dimensional parameter which expressed the ratio of the magnitude of the elastic deformation to the range of surface forces. This work was followed by Maugis and Barquins in the CNRS Laboratory at Belle Vue, who recognised the analogy between adhesion and fracture |
Beschreibung: | 1 Online-Ressource (XIV, 414 p) |
ISBN: | 9783662041253 9783642085383 |
DOI: | 10.1007/978-3-662-04125-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042414314 | ||
003 | DE-604 | ||
005 | 20230112 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783662041253 |c Online |9 978-3-662-04125-3 | ||
020 | |a 9783642085383 |c Print |9 978-3-642-08538-3 | ||
024 | 7 | |a 10.1007/978-3-662-04125-3 |2 doi | |
035 | |a (OCoLC)863962178 | ||
035 | |a (DE-599)BVBBV042414314 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 620.44 |2 23 | |
084 | |a UF 1800 |0 (DE-625)145565: |2 rvk | ||
084 | |a UF 3000 |0 (DE-625)145570: |2 rvk | ||
084 | |a UP 1100 |0 (DE-625)146344: |2 rvk | ||
084 | |a UP 7990 |0 (DE-625)146446: |2 rvk | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Maugis, Daniel |d 1934- |e Verfasser |0 (DE-588)121406431 |4 aut | |
245 | 1 | 0 | |a Contact, adhesion and rupture of elastic solids |c D. Maugis |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (XIV, 414 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Solid-State Sciences |v 130 | |
500 | |a In 1970 an investigation into rubber friction, sponsored by a manufacturer of automobile windscreen wipers, was being carried out at the Cavendish Laboratory in Cambridge, England. When a smooth spherical slider of soft rubber was placed in contact with flat glass or perspex, the compliance of the rubber enabled it to conform to any slight roughness of the two surfaces such that perfect contact was obtained. In these circumstances the surfaces were found to adhere: under load the contact area exceeded that predicted by the Hertz theory of elastic contact, a contact area of finite size was seen at zero load and a tensile force was required to pull the surfaces apart. In an attempt to model these observations the JKR theory (Johnson, Kendall and Roberts, 1971) was born. At the same time, working in Moscow on adhesion of particles in colloidal suspension, Derjaguin, Muller and Toporov had developed a different ("DMT") theory of the adhesion of elastic spheres (DMT, 1975). At first it was thought that these theories were incompatible, until Tabor suggested that each applied to opposite ends of the spectrum of a non-dimensional parameter which expressed the ratio of the magnitude of the elastic deformation to the range of surface forces. This work was followed by Maugis and Barquins in the CNRS Laboratory at Belle Vue, who recognised the analogy between adhesion and fracture | ||
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Materials Science | |
650 | 4 | |a Surfaces and Interfaces, Thin Films | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 0 | 7 | |a Festkörpermechanik |0 (DE-588)4129367-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastomechanik |0 (DE-588)4014161-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastomechanik |0 (DE-588)4014161-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Festkörpermechanik |0 (DE-588)4129367-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-04125-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849807 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153079791091712 |
---|---|
any_adam_object | |
author | Maugis, Daniel 1934- |
author_GND | (DE-588)121406431 |
author_facet | Maugis, Daniel 1934- |
author_role | aut |
author_sort | Maugis, Daniel 1934- |
author_variant | d m dm |
building | Verbundindex |
bvnumber | BV042414314 |
classification_rvk | UF 1800 UF 3000 UP 1100 UP 7990 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863962178 (DE-599)BVBBV042414314 |
dewey-full | 620.44 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.44 |
dewey-search | 620.44 |
dewey-sort | 3620.44 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-3-662-04125-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416nmm a2200553zcb4500</leader><controlfield tag="001">BV042414314</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230112 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662041253</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-04125-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642085383</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08538-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-04125-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863962178</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414314</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.44</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 1800</subfield><subfield code="0">(DE-625)145565:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3000</subfield><subfield code="0">(DE-625)145570:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1100</subfield><subfield code="0">(DE-625)146344:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 7990</subfield><subfield code="0">(DE-625)146446:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maugis, Daniel</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121406431</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Contact, adhesion and rupture of elastic solids</subfield><subfield code="c">D. Maugis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 414 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">130</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In 1970 an investigation into rubber friction, sponsored by a manufacturer of automobile windscreen wipers, was being carried out at the Cavendish Laboratory in Cambridge, England. When a smooth spherical slider of soft rubber was placed in contact with flat glass or perspex, the compliance of the rubber enabled it to conform to any slight roughness of the two surfaces such that perfect contact was obtained. In these circumstances the surfaces were found to adhere: under load the contact area exceeded that predicted by the Hertz theory of elastic contact, a contact area of finite size was seen at zero load and a tensile force was required to pull the surfaces apart. In an attempt to model these observations the JKR theory (Johnson, Kendall and Roberts, 1971) was born. At the same time, working in Moscow on adhesion of particles in colloidal suspension, Derjaguin, Muller and Toporov had developed a different ("DMT") theory of the adhesion of elastic spheres (DMT, 1975). At first it was thought that these theories were incompatible, until Tabor suggested that each applied to opposite ends of the spectrum of a non-dimensional parameter which expressed the ratio of the magnitude of the elastic deformation to the range of surface forces. This work was followed by Maugis and Barquins in the CNRS Laboratory at Belle Vue, who recognised the analogy between adhesion and fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces and Interfaces, Thin Films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastomechanik</subfield><subfield code="0">(DE-588)4014161-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastomechanik</subfield><subfield code="0">(DE-588)4014161-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Festkörpermechanik</subfield><subfield code="0">(DE-588)4129367-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-04125-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849807</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042414314 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:55Z |
institution | BVB |
isbn | 9783662041253 9783642085383 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849807 |
oclc_num | 863962178 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIV, 414 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Solid-State Sciences |
spelling | Maugis, Daniel 1934- Verfasser (DE-588)121406431 aut Contact, adhesion and rupture of elastic solids D. Maugis Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (XIV, 414 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Solid-State Sciences 130 In 1970 an investigation into rubber friction, sponsored by a manufacturer of automobile windscreen wipers, was being carried out at the Cavendish Laboratory in Cambridge, England. When a smooth spherical slider of soft rubber was placed in contact with flat glass or perspex, the compliance of the rubber enabled it to conform to any slight roughness of the two surfaces such that perfect contact was obtained. In these circumstances the surfaces were found to adhere: under load the contact area exceeded that predicted by the Hertz theory of elastic contact, a contact area of finite size was seen at zero load and a tensile force was required to pull the surfaces apart. In an attempt to model these observations the JKR theory (Johnson, Kendall and Roberts, 1971) was born. At the same time, working in Moscow on adhesion of particles in colloidal suspension, Derjaguin, Muller and Toporov had developed a different ("DMT") theory of the adhesion of elastic spheres (DMT, 1975). At first it was thought that these theories were incompatible, until Tabor suggested that each applied to opposite ends of the spectrum of a non-dimensional parameter which expressed the ratio of the magnitude of the elastic deformation to the range of surface forces. This work was followed by Maugis and Barquins in the CNRS Laboratory at Belle Vue, who recognised the analogy between adhesion and fracture Surfaces (Physics) Materials Science Surfaces and Interfaces, Thin Films Characterization and Evaluation of Materials Festkörpermechanik (DE-588)4129367-8 gnd rswk-swf Elastomechanik (DE-588)4014161-5 gnd rswk-swf Elastomechanik (DE-588)4014161-5 s 1\p DE-604 Festkörpermechanik (DE-588)4129367-8 s 2\p DE-604 https://doi.org/10.1007/978-3-662-04125-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Maugis, Daniel 1934- Contact, adhesion and rupture of elastic solids Surfaces (Physics) Materials Science Surfaces and Interfaces, Thin Films Characterization and Evaluation of Materials Festkörpermechanik (DE-588)4129367-8 gnd Elastomechanik (DE-588)4014161-5 gnd |
subject_GND | (DE-588)4129367-8 (DE-588)4014161-5 |
title | Contact, adhesion and rupture of elastic solids |
title_auth | Contact, adhesion and rupture of elastic solids |
title_exact_search | Contact, adhesion and rupture of elastic solids |
title_full | Contact, adhesion and rupture of elastic solids D. Maugis |
title_fullStr | Contact, adhesion and rupture of elastic solids D. Maugis |
title_full_unstemmed | Contact, adhesion and rupture of elastic solids D. Maugis |
title_short | Contact, adhesion and rupture of elastic solids |
title_sort | contact adhesion and rupture of elastic solids |
topic | Surfaces (Physics) Materials Science Surfaces and Interfaces, Thin Films Characterization and Evaluation of Materials Festkörpermechanik (DE-588)4129367-8 gnd Elastomechanik (DE-588)4014161-5 gnd |
topic_facet | Surfaces (Physics) Materials Science Surfaces and Interfaces, Thin Films Characterization and Evaluation of Materials Festkörpermechanik Elastomechanik |
url | https://doi.org/10.1007/978-3-662-04125-3 |
work_keys_str_mv | AT maugisdaniel contactadhesionandruptureofelasticsolids |