Operator Algebras and Quantum Statistical Mechanics: Equilibrium States. Models in Quantum Statistical Mechanics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1997
|
Ausgabe: | Second Edition |
Schriftenreihe: | Texts and Monographs in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems. Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented |
Beschreibung: | 1 Online-Ressource (XIII, 517 p) |
ISBN: | 9783662034446 9783642082573 |
ISSN: | 1864-5879 |
DOI: | 10.1007/978-3-662-03444-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042414243 | ||
003 | DE-604 | ||
005 | 20180424 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783662034446 |c Online |9 978-3-662-03444-6 | ||
020 | |a 9783642082573 |c Print |9 978-3-642-08257-3 | ||
024 | 7 | |a 10.1007/978-3-662-03444-6 |2 doi | |
035 | |a (OCoLC)860226438 | ||
035 | |a (DE-599)BVBBV042414243 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Bratteli, Ola |e Verfasser |4 aut | |
245 | 1 | 0 | |a Operator Algebras and Quantum Statistical Mechanics |b Equilibrium States. Models in Quantum Statistical Mechanics |c by Ola Bratteli, Derek W. Robinson |
250 | |a Second Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1997 | |
300 | |a 1 Online-Ressource (XIII, 517 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts and Monographs in Physics |x 1864-5879 | |
500 | |a For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems. Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
700 | 1 | |a Robinson, Derek W. |d 1935- |e Sonstige |0 (DE-588)107889455 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-03444-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849736 |
Datensatz im Suchindex
_version_ | 1804153079636951040 |
---|---|
any_adam_object | |
author | Bratteli, Ola |
author_GND | (DE-588)107889455 |
author_facet | Bratteli, Ola |
author_role | aut |
author_sort | Bratteli, Ola |
author_variant | o b ob |
building | Verbundindex |
bvnumber | BV042414243 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)860226438 (DE-599)BVBBV042414243 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-662-03444-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02010nmm a2200445zc 4500</leader><controlfield tag="001">BV042414243</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180424 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662034446</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03444-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642082573</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08257-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03444-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860226438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414243</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bratteli, Ola</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Operator Algebras and Quantum Statistical Mechanics</subfield><subfield code="b">Equilibrium States. Models in Quantum Statistical Mechanics</subfield><subfield code="c">by Ola Bratteli, Derek W. Robinson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 517 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and Monographs in Physics</subfield><subfield code="x">1864-5879</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems. Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Derek W.</subfield><subfield code="d">1935-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)107889455</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03444-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849736</subfield></datafield></record></collection> |
id | DE-604.BV042414243 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783662034446 9783642082573 |
issn | 1864-5879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849736 |
oclc_num | 860226438 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 517 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Texts and Monographs in Physics |
spelling | Bratteli, Ola Verfasser aut Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics by Ola Bratteli, Derek W. Robinson Second Edition Berlin, Heidelberg Springer Berlin Heidelberg 1997 1 Online-Ressource (XIII, 517 p) txt rdacontent c rdamedia cr rdacarrier Texts and Monographs in Physics 1864-5879 For almost two decades this has been the classical textbook on applications of operator algebra theory to quantum statistical physics. It describes the general structure of equilibrium states, the KMS-condition and stability, quantum spin systems and continuous systems. Major changes in the new edition relate to Bose--Einstein condensation, the dynamics of the X-Y model and questions on phase transitions. Notes and remarks have been considerably augmented Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Robinson, Derek W. 1935- Sonstige (DE-588)107889455 oth https://doi.org/10.1007/978-3-662-03444-6 Verlag Volltext |
spellingShingle | Bratteli, Ola Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik |
title | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics |
title_auth | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics |
title_exact_search | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics |
title_full | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics by Ola Bratteli, Derek W. Robinson |
title_fullStr | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics by Ola Bratteli, Derek W. Robinson |
title_full_unstemmed | Operator Algebras and Quantum Statistical Mechanics Equilibrium States. Models in Quantum Statistical Mechanics by Ola Bratteli, Derek W. Robinson |
title_short | Operator Algebras and Quantum Statistical Mechanics |
title_sort | operator algebras and quantum statistical mechanics equilibrium states models in quantum statistical mechanics |
title_sub | Equilibrium States. Models in Quantum Statistical Mechanics |
topic | Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik |
topic_facet | Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik |
url | https://doi.org/10.1007/978-3-662-03444-6 |
work_keys_str_mv | AT bratteliola operatoralgebrasandquantumstatisticalmechanicsequilibriumstatesmodelsinquantumstatisticalmechanics AT robinsonderekw operatoralgebrasandquantumstatisticalmechanicsequilibriumstatesmodelsinquantumstatisticalmechanics |