The fractional quantum Hall effect: properties of an incompressible quantum fluid
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Springer Series in Solid-State Sciences
85 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new structures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the experimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the twodimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semiconductor materials and devices, especially in the field of two-dimensional electron systems |
Beschreibung: | 1 Online-Ressource (XII, 175p. 85 illus) |
ISBN: | 9783642971013 9783642971037 |
DOI: | 10.1007/978-3-642-97101-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042414074 | ||
003 | DE-604 | ||
005 | 20220120 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783642971013 |c Online |9 978-3-642-97101-3 | ||
020 | |a 9783642971037 |c Print |9 978-3-642-97103-7 | ||
024 | 7 | |a 10.1007/978-3-642-97101-3 |2 doi | |
035 | |a (OCoLC)863867069 | ||
035 | |a (DE-599)BVBBV042414074 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 536.7 |2 23 | |
084 | |a UP 1100 |0 (DE-625)146344: |2 rvk | ||
084 | |a UP 5110 |0 (DE-625)146414: |2 rvk | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Chakraborty, Tapash |d 1950- |e Verfasser |0 (DE-588)13690033X |4 aut | |
245 | 1 | 0 | |a The fractional quantum Hall effect |b properties of an incompressible quantum fluid |c T. Chakraborty, P. Pietiläinen |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (XII, 175p. 85 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Springer Series in Solid-State Sciences |v 85 | |
500 | |a The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new structures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the experimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the twodimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semiconductor materials and devices, especially in the field of two-dimensional electron systems | ||
650 | 4 | |a Physics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Surfaces and Interfaces, Thin Films | |
650 | 0 | 7 | |a Quantenphysik |0 (DE-588)4266670-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hall-Effekt |0 (DE-588)4023028-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktionierter Quanten-Hall-Effekt |0 (DE-588)4204014-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktionierter Quanten-Hall-Effekt |0 (DE-588)4204014-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hall-Effekt |0 (DE-588)4023028-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Quantenphysik |0 (DE-588)4266670-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Pietiläinen, Pekka |d 1946- |e Sonstige |0 (DE-588)136900380 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 3-540-19111-9 |
830 | 0 | |a Springer Series in Solid-State Sciences |v 85 |w (DE-604)BV000016582 |9 85 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-97101-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849567 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153079264706560 |
---|---|
any_adam_object | |
author | Chakraborty, Tapash 1950- |
author_GND | (DE-588)13690033X (DE-588)136900380 |
author_facet | Chakraborty, Tapash 1950- |
author_role | aut |
author_sort | Chakraborty, Tapash 1950- |
author_variant | t c tc |
building | Verbundindex |
bvnumber | BV042414074 |
classification_rvk | UP 1100 UP 5110 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863867069 (DE-599)BVBBV042414074 |
dewey-full | 536.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.7 |
dewey-search | 536.7 |
dewey-sort | 3536.7 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-97101-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04105nmm a2200625zcb4500</leader><controlfield tag="001">BV042414074</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220120 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642971013</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-97101-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642971037</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-97103-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-97101-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863867069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042414074</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1100</subfield><subfield code="0">(DE-625)146344:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 5110</subfield><subfield code="0">(DE-625)146414:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chakraborty, Tapash</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13690033X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The fractional quantum Hall effect</subfield><subfield code="b">properties of an incompressible quantum fluid</subfield><subfield code="c">T. Chakraborty, P. Pietiläinen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 175p. 85 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">85</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new structures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the experimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the twodimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semiconductor materials and devices, especially in the field of two-dimensional electron systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces and Interfaces, Thin Films</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenphysik</subfield><subfield code="0">(DE-588)4266670-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hall-Effekt</subfield><subfield code="0">(DE-588)4023028-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktionierter Quanten-Hall-Effekt</subfield><subfield code="0">(DE-588)4204014-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktionierter Quanten-Hall-Effekt</subfield><subfield code="0">(DE-588)4204014-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hall-Effekt</subfield><subfield code="0">(DE-588)4023028-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenphysik</subfield><subfield code="0">(DE-588)4266670-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pietiläinen, Pekka</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)136900380</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">3-540-19111-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">85</subfield><subfield code="w">(DE-604)BV000016582</subfield><subfield code="9">85</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-97101-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849567</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042414074 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783642971013 9783642971037 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849567 |
oclc_num | 863867069 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 175p. 85 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Springer Series in Solid-State Sciences |
series2 | Springer Series in Solid-State Sciences |
spelling | Chakraborty, Tapash 1950- Verfasser (DE-588)13690033X aut The fractional quantum Hall effect properties of an incompressible quantum fluid T. Chakraborty, P. Pietiläinen Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (XII, 175p. 85 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Solid-State Sciences 85 The experimental discovery of the fractional quantum Hall effect (FQHE) at the end of 1981 by Tsui, Stormer and Gossard was absolutely unexpected since, at this time, no theoretical work existed that could predict new structures in the magnetotransport coefficients under conditions representing the extreme quantum limit. It is more than thirty years since investigations of bulk semiconductors in very strong magnetic fields were begun. Under these conditions, only the lowest Landau level is occupied and the theory predicted a monotonic variation of the resistivity with increasing magnetic field, depending sensitively on the scattering mechanism. However, the experimental data could not be analyzed accurately since magnetic freeze-out effects and the transitions from a degenerate to a nondegenerate system complicated the interpretation of the data. For a two-dimensional electron gas, where the positive background charge is well separated from the twodimensional system, magnetic freeze-out effects are barely visible and an analysis of the data in the extreme quantum limit seems to be easier. First measurements in this magnetic field region on silicon field-effect transistors were not successful because the disorder in these devices was so large that all electrons in the lowest Landau level were localized. Consequently, models of a spin glass and finally of a Wigner solid were developed and much effort was put into developing the technology for improving the quality of semiconductor materials and devices, especially in the field of two-dimensional electron systems Physics Thermodynamics Surfaces (Physics) Statistical Physics, Dynamical Systems and Complexity Surfaces and Interfaces, Thin Films Quantenphysik (DE-588)4266670-3 gnd rswk-swf Hall-Effekt (DE-588)4023028-4 gnd rswk-swf Fraktionierter Quanten-Hall-Effekt (DE-588)4204014-0 gnd rswk-swf Fraktionierter Quanten-Hall-Effekt (DE-588)4204014-0 s 1\p DE-604 Hall-Effekt (DE-588)4023028-4 s 2\p DE-604 Quantenphysik (DE-588)4266670-3 s 3\p DE-604 Pietiläinen, Pekka 1946- Sonstige (DE-588)136900380 oth Erscheint auch als Druck-Ausgabe 3-540-19111-9 Springer Series in Solid-State Sciences 85 (DE-604)BV000016582 85 https://doi.org/10.1007/978-3-642-97101-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chakraborty, Tapash 1950- The fractional quantum Hall effect properties of an incompressible quantum fluid Springer Series in Solid-State Sciences Physics Thermodynamics Surfaces (Physics) Statistical Physics, Dynamical Systems and Complexity Surfaces and Interfaces, Thin Films Quantenphysik (DE-588)4266670-3 gnd Hall-Effekt (DE-588)4023028-4 gnd Fraktionierter Quanten-Hall-Effekt (DE-588)4204014-0 gnd |
subject_GND | (DE-588)4266670-3 (DE-588)4023028-4 (DE-588)4204014-0 |
title | The fractional quantum Hall effect properties of an incompressible quantum fluid |
title_auth | The fractional quantum Hall effect properties of an incompressible quantum fluid |
title_exact_search | The fractional quantum Hall effect properties of an incompressible quantum fluid |
title_full | The fractional quantum Hall effect properties of an incompressible quantum fluid T. Chakraborty, P. Pietiläinen |
title_fullStr | The fractional quantum Hall effect properties of an incompressible quantum fluid T. Chakraborty, P. Pietiläinen |
title_full_unstemmed | The fractional quantum Hall effect properties of an incompressible quantum fluid T. Chakraborty, P. Pietiläinen |
title_short | The fractional quantum Hall effect |
title_sort | the fractional quantum hall effect properties of an incompressible quantum fluid |
title_sub | properties of an incompressible quantum fluid |
topic | Physics Thermodynamics Surfaces (Physics) Statistical Physics, Dynamical Systems and Complexity Surfaces and Interfaces, Thin Films Quantenphysik (DE-588)4266670-3 gnd Hall-Effekt (DE-588)4023028-4 gnd Fraktionierter Quanten-Hall-Effekt (DE-588)4204014-0 gnd |
topic_facet | Physics Thermodynamics Surfaces (Physics) Statistical Physics, Dynamical Systems and Complexity Surfaces and Interfaces, Thin Films Quantenphysik Hall-Effekt Fraktionierter Quanten-Hall-Effekt |
url | https://doi.org/10.1007/978-3-642-97101-3 |
volume_link | (DE-604)BV000016582 |
work_keys_str_mv | AT chakrabortytapash thefractionalquantumhalleffectpropertiesofanincompressiblequantumfluid AT pietilainenpekka thefractionalquantumhalleffectpropertiesofanincompressiblequantumfluid |