Deterministic Chaos in Infinite Quantum Systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Trieste Notes in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too |
Beschreibung: | 1 Online-Ressource (VI, 225p) |
ISBN: | 9783642849992 9783540570172 |
DOI: | 10.1007/978-3-642-84999-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413941 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783642849992 |c Online |9 978-3-642-84999-2 | ||
020 | |a 9783540570172 |c Print |9 978-3-540-57017-2 | ||
024 | 7 | |a 10.1007/978-3-642-84999-2 |2 doi | |
035 | |a (OCoLC)863860808 | ||
035 | |a (DE-599)BVBBV042413941 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 536.7 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Benatti, Fabio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Deterministic Chaos in Infinite Quantum Systems |c by Fabio Benatti |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (VI, 225p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Trieste Notes in Physics | |
500 | |a The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Quantenchaos |0 (DE-588)4130849-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Entropie |0 (DE-588)4014894-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchaos |0 (DE-588)4130849-9 |D s |
689 | 0 | 1 | |a Entropie |0 (DE-588)4014894-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84999-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849434 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078961668096 |
---|---|
any_adam_object | |
author | Benatti, Fabio |
author_facet | Benatti, Fabio |
author_role | aut |
author_sort | Benatti, Fabio |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV042413941 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863860808 (DE-599)BVBBV042413941 |
dewey-full | 536.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.7 |
dewey-search | 536.7 |
dewey-sort | 3536.7 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-84999-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03254nmm a2200517zc 4500</leader><controlfield tag="001">BV042413941</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642849992</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-84999-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540570172</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-57017-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84999-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863860808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Benatti, Fabio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deterministic Chaos in Infinite Quantum Systems</subfield><subfield code="c">by Fabio Benatti</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 225p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Trieste Notes in Physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchaos</subfield><subfield code="0">(DE-588)4130849-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Entropie</subfield><subfield code="0">(DE-588)4014894-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchaos</subfield><subfield code="0">(DE-588)4130849-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Entropie</subfield><subfield code="0">(DE-588)4014894-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84999-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849434</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413941 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783642849992 9783540570172 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849434 |
oclc_num | 863860808 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VI, 225p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Trieste Notes in Physics |
spelling | Benatti, Fabio Verfasser aut Deterministic Chaos in Infinite Quantum Systems by Fabio Benatti Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (VI, 225p) txt rdacontent c rdamedia cr rdacarrier Trieste Notes in Physics The purpose of this volume is to give a detailed account of a series of re sults concerning some ergodic questions of quantum mechanics which have the past six years following the formulation of a generalized been addressed in Kolmogorov-Sinai entropy by A.Connes, H.Narnhofer and W.Thirring. Classical ergodicity and mixing are fully developed topics of mathematical physics dealing with the lowest levels in a hierarchy of increasingly random behaviours with the so-called Bernoulli systems at its apex showing a structure that characterizes them as Kolmogorov (K-) systems. It seems not only reasonable, but also inevitable to use classical ergodic theory as a guide in the study of ergodic behaviours of quantum systems. The question is which kind of random behaviours quantum systems can exhibit and whether there is any way of classifying them. Asymptotic statistical independence and, correspondingly, complete lack of control over the distant future are typical features of classical K-systems. These properties are fully characterized by the dynamical entropy of Kolmogorov and Sinai, so that the introduction of a similar concept for quantum systems has provided the opportunity of raising meaningful questions and of proposing some non-trivial answers to them. Since in the following we shall be mainly concerned with infinite quantum systems, the algebraic approach to quantum theory will provide us with the necessary analytical tools which can be used in the commutative context, too Physics Quantum theory Thermodynamics Statistical Physics, Dynamical Systems and Complexity Quantum Information Technology, Spintronics Quantum Physics Quantentheorie Quantenchaos (DE-588)4130849-9 gnd rswk-swf Entropie (DE-588)4014894-4 gnd rswk-swf Quantenchaos (DE-588)4130849-9 s Entropie (DE-588)4014894-4 s 1\p DE-604 https://doi.org/10.1007/978-3-642-84999-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Benatti, Fabio Deterministic Chaos in Infinite Quantum Systems Physics Quantum theory Thermodynamics Statistical Physics, Dynamical Systems and Complexity Quantum Information Technology, Spintronics Quantum Physics Quantentheorie Quantenchaos (DE-588)4130849-9 gnd Entropie (DE-588)4014894-4 gnd |
subject_GND | (DE-588)4130849-9 (DE-588)4014894-4 |
title | Deterministic Chaos in Infinite Quantum Systems |
title_auth | Deterministic Chaos in Infinite Quantum Systems |
title_exact_search | Deterministic Chaos in Infinite Quantum Systems |
title_full | Deterministic Chaos in Infinite Quantum Systems by Fabio Benatti |
title_fullStr | Deterministic Chaos in Infinite Quantum Systems by Fabio Benatti |
title_full_unstemmed | Deterministic Chaos in Infinite Quantum Systems by Fabio Benatti |
title_short | Deterministic Chaos in Infinite Quantum Systems |
title_sort | deterministic chaos in infinite quantum systems |
topic | Physics Quantum theory Thermodynamics Statistical Physics, Dynamical Systems and Complexity Quantum Information Technology, Spintronics Quantum Physics Quantentheorie Quantenchaos (DE-588)4130849-9 gnd Entropie (DE-588)4014894-4 gnd |
topic_facet | Physics Quantum theory Thermodynamics Statistical Physics, Dynamical Systems and Complexity Quantum Information Technology, Spintronics Quantum Physics Quantentheorie Quantenchaos Entropie |
url | https://doi.org/10.1007/978-3-642-84999-2 |
work_keys_str_mv | AT benattifabio deterministicchaosininfinitequantumsystems |