Products of Random Matrices: in Statistical Physics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1993
|
Schriftenreihe: | Springer Series in Solid-State Sciences
104 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure |
Beschreibung: | 1 Online-Ressource (XIV, 169p. 39 illus) |
ISBN: | 9783642849428 9783642849442 |
ISSN: | 0171-1873 |
DOI: | 10.1007/978-3-642-84942-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413938 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783642849428 |c Online |9 978-3-642-84942-8 | ||
020 | |a 9783642849442 |c Print |9 978-3-642-84944-2 | ||
024 | 7 | |a 10.1007/978-3-642-84942-8 |2 doi | |
035 | |a (OCoLC)863859375 | ||
035 | |a (DE-599)BVBBV042413938 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 536.7 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Crisanti, Andrea |e Verfasser |4 aut | |
245 | 1 | 0 | |a Products of Random Matrices |b in Statistical Physics |c by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1993 | |
300 | |a 1 Online-Ressource (XIV, 169p. 39 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Solid-State Sciences |v 104 |x 0171-1873 | |
500 | |a At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure | ||
650 | 4 | |a Physics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Condensed Matter Physics | |
650 | 0 | 7 | |a Stochastische Matrix |0 (DE-588)4057624-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufällige Folge |0 (DE-588)4191092-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produkt |g Mathematik |0 (DE-588)4126359-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Produkt |0 (DE-588)4139399-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zufall |0 (DE-588)4068050-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Mechanik |0 (DE-588)4056999-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ljapunov-Exponent |0 (DE-588)4123668-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 0 | 1 | |a Produkt |g Mathematik |0 (DE-588)4126359-5 |D s |
689 | 0 | 2 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Stochastische Matrix |0 (DE-588)4057624-3 |D s |
689 | 1 | 1 | |a Ljapunov-Exponent |0 (DE-588)4123668-3 |D s |
689 | 1 | 2 | |a Statistische Mechanik |0 (DE-588)4056999-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Zufall |0 (DE-588)4068050-2 |D s |
689 | 2 | 1 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Produkt |0 (DE-588)4139399-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Zufällige Folge |0 (DE-588)4191092-8 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
700 | 1 | |a Paladin, Giovanni |e Sonstige |4 oth | |
700 | 1 | |a Vulpiani, Angelo |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84942-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849431 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078958522368 |
---|---|
any_adam_object | |
author | Crisanti, Andrea |
author_facet | Crisanti, Andrea |
author_role | aut |
author_sort | Crisanti, Andrea |
author_variant | a c ac |
building | Verbundindex |
bvnumber | BV042413938 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863859375 (DE-599)BVBBV042413938 |
dewey-full | 536.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536.7 |
dewey-search | 536.7 |
dewey-sort | 3536.7 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-84942-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04901nmm a2200817zcb4500</leader><controlfield tag="001">BV042413938</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642849428</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-84942-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642849442</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-84944-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84942-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863859375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413938</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crisanti, Andrea</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Products of Random Matrices</subfield><subfield code="b">in Statistical Physics</subfield><subfield code="c">by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 169p. 39 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Solid-State Sciences</subfield><subfield code="v">104</subfield><subfield code="x">0171-1873</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufällige Folge</subfield><subfield code="0">(DE-588)4191092-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4126359-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Produkt</subfield><subfield code="0">(DE-588)4139399-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufall</subfield><subfield code="0">(DE-588)4068050-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ljapunov-Exponent</subfield><subfield code="0">(DE-588)4123668-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Produkt</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4126359-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische Matrix</subfield><subfield code="0">(DE-588)4057624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Ljapunov-Exponent</subfield><subfield code="0">(DE-588)4123668-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zufall</subfield><subfield code="0">(DE-588)4068050-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Produkt</subfield><subfield code="0">(DE-588)4139399-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Zufällige Folge</subfield><subfield code="0">(DE-588)4191092-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Paladin, Giovanni</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vulpiani, Angelo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84942-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849431</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413938 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783642849428 9783642849442 |
issn | 0171-1873 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849431 |
oclc_num | 863859375 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIV, 169p. 39 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Solid-State Sciences |
spelling | Crisanti, Andrea Verfasser aut Products of Random Matrices in Statistical Physics by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani Berlin, Heidelberg Springer Berlin Heidelberg 1993 1 Online-Ressource (XIV, 169p. 39 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Solid-State Sciences 104 0171-1873 At the present moment, after the success of the renormalization group in providing a conceptual framework for studying second-order phase tran sitions, we have a nearly satisfactory understanding of the statistical me chanics of classical systems with a non-random Hamiltonian. The situation is completely different if we consider the theory of systems with a random Hamiltonian or of chaotic dynamical systems. The two fields are connected; in fact, in the latter the effects of deterministic chaos can be modelled by an appropriate stochastic process. Although many interesting results have been obtained in recent years and much progress has been made, we still lack a satisfactory understanding of the extremely wide variety of phenomena which are present in these fields. The study of disordered or chaotic systems is the new frontier where new ideas and techniques are being developed. More interesting and deep results are expected to come in future years. The properties of random matrices and their products form a basic tool, whose importance cannot be underestimated. They playa role as important as Fourier transforms for differential equations. This book is extremely interesting as far as it presents a unified approach for the main results which have been obtained in the study of random ma trices. It will become a reference book for people working in the subject. The book is written by physicists, uses the language of physics and I am sure that many physicists will read it with great pleasure Physics Thermodynamics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Stochastische Matrix (DE-588)4057624-3 gnd rswk-swf Zufällige Folge (DE-588)4191092-8 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Produkt Mathematik (DE-588)4126359-5 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Produkt (DE-588)4139399-5 gnd rswk-swf Zufall (DE-588)4068050-2 gnd rswk-swf Statistische Mechanik (DE-588)4056999-8 gnd rswk-swf Ljapunov-Exponent (DE-588)4123668-3 gnd rswk-swf Stochastische Matrix (DE-588)4057624-3 s Produkt Mathematik (DE-588)4126359-5 s Statistische Physik (DE-588)4057000-9 s 1\p DE-604 Ljapunov-Exponent (DE-588)4123668-3 s Statistische Mechanik (DE-588)4056999-8 s 2\p DE-604 Zufall (DE-588)4068050-2 s 3\p DE-604 Produkt (DE-588)4139399-5 s 4\p DE-604 Matrizenrechnung (DE-588)4126963-9 s 5\p DE-604 Zufällige Folge (DE-588)4191092-8 s 6\p DE-604 Paladin, Giovanni Sonstige oth Vulpiani, Angelo Sonstige oth https://doi.org/10.1007/978-3-642-84942-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Crisanti, Andrea Products of Random Matrices in Statistical Physics Physics Thermodynamics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Stochastische Matrix (DE-588)4057624-3 gnd Zufällige Folge (DE-588)4191092-8 gnd Matrizenrechnung (DE-588)4126963-9 gnd Produkt Mathematik (DE-588)4126359-5 gnd Statistische Physik (DE-588)4057000-9 gnd Produkt (DE-588)4139399-5 gnd Zufall (DE-588)4068050-2 gnd Statistische Mechanik (DE-588)4056999-8 gnd Ljapunov-Exponent (DE-588)4123668-3 gnd |
subject_GND | (DE-588)4057624-3 (DE-588)4191092-8 (DE-588)4126963-9 (DE-588)4126359-5 (DE-588)4057000-9 (DE-588)4139399-5 (DE-588)4068050-2 (DE-588)4056999-8 (DE-588)4123668-3 |
title | Products of Random Matrices in Statistical Physics |
title_auth | Products of Random Matrices in Statistical Physics |
title_exact_search | Products of Random Matrices in Statistical Physics |
title_full | Products of Random Matrices in Statistical Physics by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani |
title_fullStr | Products of Random Matrices in Statistical Physics by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani |
title_full_unstemmed | Products of Random Matrices in Statistical Physics by Andrea Crisanti, Giovanni Paladin, Angelo Vulpiani |
title_short | Products of Random Matrices |
title_sort | products of random matrices in statistical physics |
title_sub | in Statistical Physics |
topic | Physics Thermodynamics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Stochastische Matrix (DE-588)4057624-3 gnd Zufällige Folge (DE-588)4191092-8 gnd Matrizenrechnung (DE-588)4126963-9 gnd Produkt Mathematik (DE-588)4126359-5 gnd Statistische Physik (DE-588)4057000-9 gnd Produkt (DE-588)4139399-5 gnd Zufall (DE-588)4068050-2 gnd Statistische Mechanik (DE-588)4056999-8 gnd Ljapunov-Exponent (DE-588)4123668-3 gnd |
topic_facet | Physics Thermodynamics Statistical Physics, Dynamical Systems and Complexity Condensed Matter Physics Stochastische Matrix Zufällige Folge Matrizenrechnung Produkt Mathematik Statistische Physik Produkt Zufall Statistische Mechanik Ljapunov-Exponent |
url | https://doi.org/10.1007/978-3-642-84942-8 |
work_keys_str_mv | AT crisantiandrea productsofrandommatricesinstatisticalphysics AT paladingiovanni productsofrandommatricesinstatisticalphysics AT vulpianiangelo productsofrandommatricesinstatisticalphysics |