Spectral Methods in Fluid Dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Springer Series in Computational Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use |
Beschreibung: | 1 Online-Ressource (XVI, 568p. 88 illus) |
ISBN: | 9783642841088 9783540522058 |
ISSN: | 1434-8322 |
DOI: | 10.1007/978-3-642-84108-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413882 | ||
003 | DE-604 | ||
005 | 20190514 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783642841088 |c Online |9 978-3-642-84108-8 | ||
020 | |a 9783540522058 |c Print |9 978-3-540-52205-8 | ||
024 | 7 | |a 10.1007/978-3-642-84108-8 |2 doi | |
035 | |a (OCoLC)863818936 | ||
035 | |a (DE-599)BVBBV042413882 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a MTA 309f |2 stub | ||
084 | |a PHY 220f |2 stub | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Canuto, Claudio |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spectral Methods in Fluid Dynamics |c by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (XVI, 568p. 88 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Physics |x 1434-8322 | |
500 | |a This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektralmethode |0 (DE-588)4224817-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 2 | |a Spektralmethode |0 (DE-588)4224817-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 1 | 1 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
689 | 2 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 2 | 1 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 2 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hussaini, M. Yousuff |e Sonstige |4 oth | |
700 | 1 | |a Quarteroni, Alfio |e Sonstige |4 oth | |
700 | 1 | |a Zang, Thomas A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-84108-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849375 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078811721728 |
---|---|
any_adam_object | |
author | Canuto, Claudio |
author_facet | Canuto, Claudio |
author_role | aut |
author_sort | Canuto, Claudio |
author_variant | c c cc |
building | Verbundindex |
bvnumber | BV042413882 |
classification_tum | MTA 309f PHY 220f PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863818936 (DE-599)BVBBV042413882 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-84108-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04359nmm a2200733zc 4500</leader><controlfield tag="001">BV042413882</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190514 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642841088</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-84108-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540522058</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-52205-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-84108-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863818936</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413882</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 309f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 220f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Canuto, Claudio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spectral Methods in Fluid Dynamics</subfield><subfield code="c">by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 568p. 88 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Physics</subfield><subfield code="x">1434-8322</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektralmethode</subfield><subfield code="0">(DE-588)4224817-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spektralmethode</subfield><subfield code="0">(DE-588)4224817-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hussaini, M. Yousuff</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Quarteroni, Alfio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zang, Thomas A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-84108-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849375</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413882 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783642841088 9783540522058 |
issn | 1434-8322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849375 |
oclc_num | 863818936 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVI, 568p. 88 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Physics |
spelling | Canuto, Claudio Verfasser aut Spectral Methods in Fluid Dynamics by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (XVI, 568p. 88 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Computational Physics 1434-8322 This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use Physics Mathematical physics Mechanics Mathematical Methods in Physics Numerical and Computational Physics Fluid- and Aerodynamics Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Spektralmethode (DE-588)4224817-6 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s Partielle Differentialgleichung (DE-588)4044779-0 s Spektralmethode (DE-588)4224817-6 s DE-604 Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Hydrodynamik (DE-588)4026302-2 s Spektraltheorie (DE-588)4116561-5 s 2\p DE-604 Hussaini, M. Yousuff Sonstige oth Quarteroni, Alfio Sonstige oth Zang, Thomas A. Sonstige oth https://doi.org/10.1007/978-3-642-84108-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Canuto, Claudio Spectral Methods in Fluid Dynamics Physics Mathematical physics Mechanics Mathematical Methods in Physics Numerical and Computational Physics Fluid- and Aerodynamics Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd Hydrodynamik (DE-588)4026302-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Spektralmethode (DE-588)4224817-6 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4026302-2 (DE-588)4116561-5 (DE-588)4224817-6 (DE-588)4128130-5 (DE-588)4077970-1 |
title | Spectral Methods in Fluid Dynamics |
title_auth | Spectral Methods in Fluid Dynamics |
title_exact_search | Spectral Methods in Fluid Dynamics |
title_full | Spectral Methods in Fluid Dynamics by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang |
title_fullStr | Spectral Methods in Fluid Dynamics by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang |
title_full_unstemmed | Spectral Methods in Fluid Dynamics by Claudio Canuto, M. Yousuff Hussaini, Alfio Quarteroni, Thomas A. Zang |
title_short | Spectral Methods in Fluid Dynamics |
title_sort | spectral methods in fluid dynamics |
topic | Physics Mathematical physics Mechanics Mathematical Methods in Physics Numerical and Computational Physics Fluid- and Aerodynamics Mathematische Physik Partielle Differentialgleichung (DE-588)4044779-0 gnd Hydrodynamik (DE-588)4026302-2 gnd Spektraltheorie (DE-588)4116561-5 gnd Spektralmethode (DE-588)4224817-6 gnd Numerisches Verfahren (DE-588)4128130-5 gnd Strömungsmechanik (DE-588)4077970-1 gnd |
topic_facet | Physics Mathematical physics Mechanics Mathematical Methods in Physics Numerical and Computational Physics Fluid- and Aerodynamics Mathematische Physik Partielle Differentialgleichung Hydrodynamik Spektraltheorie Spektralmethode Numerisches Verfahren Strömungsmechanik |
url | https://doi.org/10.1007/978-3-642-84108-8 |
work_keys_str_mv | AT canutoclaudio spectralmethodsinfluiddynamics AT hussainimyousuff spectralmethodsinfluiddynamics AT quarteronialfio spectralmethodsinfluiddynamics AT zangthomasa spectralmethodsinfluiddynamics |