Models in Statistical Physics and Quantum Field Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schriftenreihe: | Trieste Notes in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models |
Beschreibung: | 1 Online-Ressource (X, 151 p) |
ISBN: | 9783642835049 9783540193838 |
DOI: | 10.1007/978-3-642-83504-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413857 | ||
003 | DE-604 | ||
005 | 20210630 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783642835049 |c Online |9 978-3-642-83504-9 | ||
020 | |a 9783540193838 |c Print |9 978-3-540-19383-8 | ||
024 | 7 | |a 10.1007/978-3-642-83504-9 |2 doi | |
035 | |a (OCoLC)863817965 | ||
035 | |a (DE-599)BVBBV042413857 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a UO 4000 |0 (DE-625)146237: |2 rvk | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Grosse, Harald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Models in Statistical Physics and Quantum Field Theory |c by Harald Grosse |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (X, 151 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Trieste Notes in Physics | |
500 | |a In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Phasenumwandlung |0 (DE-588)4132140-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kritisches Phänomen |0 (DE-588)4165788-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistische Physik |0 (DE-588)4057000-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Statistische Physik |0 (DE-588)4057000-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Phasenumwandlung |0 (DE-588)4132140-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Kritisches Phänomen |0 (DE-588)4165788-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-540-19383-8 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-83504-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849350 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078755098624 |
---|---|
any_adam_object | |
author | Grosse, Harald |
author_facet | Grosse, Harald |
author_role | aut |
author_sort | Grosse, Harald |
author_variant | h g hg |
building | Verbundindex |
bvnumber | BV042413857 |
classification_rvk | UO 4000 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863817965 (DE-599)BVBBV042413857 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-83504-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03960nmm a2200637zc 4500</leader><controlfield tag="001">BV042413857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210630 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642835049</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-83504-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540193838</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-19383-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-83504-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863817965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UO 4000</subfield><subfield code="0">(DE-625)146237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grosse, Harald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models in Statistical Physics and Quantum Field Theory</subfield><subfield code="c">by Harald Grosse</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 151 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Trieste Notes in Physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kritisches Phänomen</subfield><subfield code="0">(DE-588)4165788-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistische Physik</subfield><subfield code="0">(DE-588)4057000-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Phasenumwandlung</subfield><subfield code="0">(DE-588)4132140-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kritisches Phänomen</subfield><subfield code="0">(DE-588)4165788-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-540-19383-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-83504-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849350</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413857 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:54Z |
institution | BVB |
isbn | 9783642835049 9783540193838 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849350 |
oclc_num | 863817965 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 151 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Trieste Notes in Physics |
spelling | Grosse, Harald Verfasser aut Models in Statistical Physics and Quantum Field Theory by Harald Grosse Berlin, Heidelberg Springer Berlin Heidelberg 1988 1 Online-Ressource (X, 151 p) txt rdacontent c rdamedia cr rdacarrier Trieste Notes in Physics In these lectures we summarize certain results on models in statistical physics and quantum field theory and especially emphasize the deep relation ship between these subjects. From a physical point of view, we study phase transitions of realistic systems; from a more mathematical point of view, we describe field theoretical models defined on a euclidean space-time lattice, for which the lattice constant serves as a cutoff. The connection between these two approaches is obtained by identifying partition functions for spin models with discretized functional integrals. After an introduction to critical phenomena, we present methods which prove the existence or nonexistence of phase transitions for the Ising and Heisenberg models in various dimensions. As an example of a solvable system we discuss the two-dimensional Ising model. Topological excitations determine sectors of field theoretical models. In order to illustrate this, we first discuss soliton solutions of completely integrable classical models. Afterwards we dis cuss sectors for the external field problem and for the Schwinger model. Then we put gauge models on a lattice, give a survey of some rigorous results and discuss the phase structure of some lattice gauge models. Since great interest has recently been shown in string models, we give a short introduction to both the classical mechanics of strings and the bosonic and fermionic models. The formulation of the continuum limit for lattice systems leads to a discussion of the renormalization group, which we apply to various models Physics Quantum theory Thermodynamics Quantum Physics Quantum Information Technology, Spintronics Statistical Physics, Dynamical Systems and Complexity Quantentheorie Phasenumwandlung (DE-588)4132140-6 gnd rswk-swf Kritisches Phänomen (DE-588)4165788-3 gnd rswk-swf Statistische Physik (DE-588)4057000-9 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Statistische Physik (DE-588)4057000-9 s 1\p DE-604 Phasenumwandlung (DE-588)4132140-6 s 2\p DE-604 Kritisches Phänomen (DE-588)4165788-3 s 3\p DE-604 Erscheint auch als Druck-Ausgabe 978-3-540-19383-8 https://doi.org/10.1007/978-3-642-83504-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Grosse, Harald Models in Statistical Physics and Quantum Field Theory Physics Quantum theory Thermodynamics Quantum Physics Quantum Information Technology, Spintronics Statistical Physics, Dynamical Systems and Complexity Quantentheorie Phasenumwandlung (DE-588)4132140-6 gnd Kritisches Phänomen (DE-588)4165788-3 gnd Statistische Physik (DE-588)4057000-9 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4132140-6 (DE-588)4165788-3 (DE-588)4057000-9 (DE-588)4047984-5 |
title | Models in Statistical Physics and Quantum Field Theory |
title_auth | Models in Statistical Physics and Quantum Field Theory |
title_exact_search | Models in Statistical Physics and Quantum Field Theory |
title_full | Models in Statistical Physics and Quantum Field Theory by Harald Grosse |
title_fullStr | Models in Statistical Physics and Quantum Field Theory by Harald Grosse |
title_full_unstemmed | Models in Statistical Physics and Quantum Field Theory by Harald Grosse |
title_short | Models in Statistical Physics and Quantum Field Theory |
title_sort | models in statistical physics and quantum field theory |
topic | Physics Quantum theory Thermodynamics Quantum Physics Quantum Information Technology, Spintronics Statistical Physics, Dynamical Systems and Complexity Quantentheorie Phasenumwandlung (DE-588)4132140-6 gnd Kritisches Phänomen (DE-588)4165788-3 gnd Statistische Physik (DE-588)4057000-9 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Physics Quantum theory Thermodynamics Quantum Physics Quantum Information Technology, Spintronics Statistical Physics, Dynamical Systems and Complexity Quantentheorie Phasenumwandlung Kritisches Phänomen Statistische Physik Quantenfeldtheorie |
url | https://doi.org/10.1007/978-3-642-83504-9 |
work_keys_str_mv | AT grosseharald modelsinstatisticalphysicsandquantumfieldtheory |