Inverse Problems in Quantum Scattering Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1989
|
Ausgabe: | Second Edition Revised and Expanded |
Schriftenreihe: | Texts and Monographs in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later |
Beschreibung: | 1 Online-Ressource (XXXI, 499p. 24 illus) |
ISBN: | 9783642833175 9783642833199 |
ISSN: | 1864-5879 |
DOI: | 10.1007/978-3-642-83317-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413847 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1989 |||| o||u| ||||||eng d | ||
020 | |a 9783642833175 |c Online |9 978-3-642-83317-5 | ||
020 | |a 9783642833199 |c Print |9 978-3-642-83319-9 | ||
024 | 7 | |a 10.1007/978-3-642-83317-5 |2 doi | |
035 | |a (OCoLC)863863010 | ||
035 | |a (DE-599)BVBBV042413847 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Chadan, K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Inverse Problems in Quantum Scattering Theory |c by K. Chadan, P. C. Sabatier, R. G. Newton |
250 | |a Second Edition Revised and Expanded | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1989 | |
300 | |a 1 Online-Ressource (XXXI, 499p. 24 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Texts and Monographs in Physics |x 1864-5879 | |
500 | |a The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later | ||
650 | 4 | |a Physics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Streutheorie |0 (DE-588)4183697-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Problem |0 (DE-588)4125161-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Streutheorie |0 (DE-588)4183697-2 |D s |
689 | 0 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | 2 | |a Inverses Problem |0 (DE-588)4125161-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Sabatier, P. C. |e Sonstige |4 oth | |
700 | 1 | |a Newton, R. G. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-83317-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849340 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078717349888 |
---|---|
any_adam_object | |
author | Chadan, K. |
author_facet | Chadan, K. |
author_role | aut |
author_sort | Chadan, K. |
author_variant | k c kc |
building | Verbundindex |
bvnumber | BV042413847 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863863010 (DE-599)BVBBV042413847 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-83317-5 |
edition | Second Edition Revised and Expanded |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03853nmm a2200673zc 4500</leader><controlfield tag="001">BV042413847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1989 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642833175</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-83317-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642833199</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-83319-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-83317-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863863010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chadan, K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inverse Problems in Quantum Scattering Theory</subfield><subfield code="c">by K. Chadan, P. C. Sabatier, R. G. Newton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition Revised and Expanded</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1989</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXI, 499p. 24 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Texts and Monographs in Physics</subfield><subfield code="x">1864-5879</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Streutheorie</subfield><subfield code="0">(DE-588)4183697-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sabatier, P. C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newton, R. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-83317-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849340</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413847 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642833175 9783642833199 |
issn | 1864-5879 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849340 |
oclc_num | 863863010 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XXXI, 499p. 24 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Texts and Monographs in Physics |
spelling | Chadan, K. Verfasser aut Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton Second Edition Revised and Expanded Berlin, Heidelberg Springer Berlin Heidelberg 1989 1 Online-Ressource (XXXI, 499p. 24 illus) txt rdacontent c rdamedia cr rdacarrier Texts and Monographs in Physics 1864-5879 The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later Physics Global analysis (Mathematics) Quantum theory Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Quantum Information Technology, Spintronics Quantum Physics Analysis Mathematische Physik Quantentheorie Streutheorie (DE-588)4183697-2 gnd rswk-swf Inverses Streuproblem (DE-588)4027547-4 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Inverses Problem (DE-588)4125161-1 gnd rswk-swf Streutheorie (DE-588)4183697-2 s Quantenmechanik (DE-588)4047989-4 s Inverses Problem (DE-588)4125161-1 s 1\p DE-604 Inverses Streuproblem (DE-588)4027547-4 s 2\p DE-604 Sabatier, P. C. Sonstige oth Newton, R. G. Sonstige oth https://doi.org/10.1007/978-3-642-83317-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chadan, K. Inverse Problems in Quantum Scattering Theory Physics Global analysis (Mathematics) Quantum theory Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Quantum Information Technology, Spintronics Quantum Physics Analysis Mathematische Physik Quantentheorie Streutheorie (DE-588)4183697-2 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Inverses Problem (DE-588)4125161-1 gnd |
subject_GND | (DE-588)4183697-2 (DE-588)4027547-4 (DE-588)4047989-4 (DE-588)4125161-1 |
title | Inverse Problems in Quantum Scattering Theory |
title_auth | Inverse Problems in Quantum Scattering Theory |
title_exact_search | Inverse Problems in Quantum Scattering Theory |
title_full | Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton |
title_fullStr | Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton |
title_full_unstemmed | Inverse Problems in Quantum Scattering Theory by K. Chadan, P. C. Sabatier, R. G. Newton |
title_short | Inverse Problems in Quantum Scattering Theory |
title_sort | inverse problems in quantum scattering theory |
topic | Physics Global analysis (Mathematics) Quantum theory Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Quantum Information Technology, Spintronics Quantum Physics Analysis Mathematische Physik Quantentheorie Streutheorie (DE-588)4183697-2 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Quantenmechanik (DE-588)4047989-4 gnd Inverses Problem (DE-588)4125161-1 gnd |
topic_facet | Physics Global analysis (Mathematics) Quantum theory Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Quantum Information Technology, Spintronics Quantum Physics Analysis Mathematische Physik Quantentheorie Streutheorie Inverses Streuproblem Quantenmechanik Inverses Problem |
url | https://doi.org/10.1007/978-3-642-83317-5 |
work_keys_str_mv | AT chadank inverseproblemsinquantumscatteringtheory AT sabatierpc inverseproblemsinquantumscatteringtheory AT newtonrg inverseproblemsinquantumscatteringtheory |