Fast Fourier Transform and Convolution Algorithms:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1982
|
Ausgabe: | Second Corrected and Updated Edition |
Schriftenreihe: | Springer Series in Information Sciences
2 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the first edition of this book, we covered in Chapter 6 and 7 the applications to multidimensional convolutions and DFT's of the transforms which we have introduced, back in 1977, and called polynomial transforms. Since the publication of the first edition of this book, several important new developments concerning the polynomial transforms have taken place, and we have included, in this edition, a discussion of the relationship between DFT and convolution polynomial transform algorithms. This material is covered in Appendix A, along with a presentation of new convolution polynomial transform algorithms and with the application of polynomial transforms to the computation of multidimensional cosine transforms. We have found that the short convolution and polynomial product algorithms of Chap. 3 have been used extensively. This prompted us to include, in this edition, several new one-dimensional and two-dimensional polynomial product algorithms which are listed in Appendix B. Since our book is being used as part of several graduate-level courses taught at various universities, we have added, to this edition, a set of problems which cover Chaps. 2 to 8. Some of these problems serve also to illustrate some research work on DFT and convolution algorithms. I am indebted to Mrs A. Schlageter who prepared the manuscript of this second edition. Lausanne HENRI J. NUSSBAUMER April 1982 Preface to the First Edition This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms |
Beschreibung: | 1 Online-Ressource (XII, 276p. 38 illus) |
ISBN: | 9783642818974 9783540118251 |
ISSN: | 0720-678X |
DOI: | 10.1007/978-3-642-81897-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413758 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1982 |||| o||u| ||||||eng d | ||
020 | |a 9783642818974 |c Online |9 978-3-642-81897-4 | ||
020 | |a 9783540118251 |c Print |9 978-3-540-11825-1 | ||
024 | 7 | |a 10.1007/978-3-642-81897-4 |2 doi | |
035 | |a (OCoLC)863860074 | ||
035 | |a (DE-599)BVBBV042413758 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Nussbaumer, Henri J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fast Fourier Transform and Convolution Algorithms |c by Henri J. Nussbaumer |
250 | |a Second Corrected and Updated Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1982 | |
300 | |a 1 Online-Ressource (XII, 276p. 38 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Information Sciences |v 2 |x 0720-678X | |
500 | |a In the first edition of this book, we covered in Chapter 6 and 7 the applications to multidimensional convolutions and DFT's of the transforms which we have introduced, back in 1977, and called polynomial transforms. Since the publication of the first edition of this book, several important new developments concerning the polynomial transforms have taken place, and we have included, in this edition, a discussion of the relationship between DFT and convolution polynomial transform algorithms. This material is covered in Appendix A, along with a presentation of new convolution polynomial transform algorithms and with the application of polynomial transforms to the computation of multidimensional cosine transforms. We have found that the short convolution and polynomial product algorithms of Chap. 3 have been used extensively. This prompted us to include, in this edition, several new one-dimensional and two-dimensional polynomial product algorithms which are listed in Appendix B. Since our book is being used as part of several graduate-level courses taught at various universities, we have added, to this edition, a set of problems which cover Chaps. 2 to 8. Some of these problems serve also to illustrate some research work on DFT and convolution algorithms. I am indebted to Mrs A. Schlageter who prepared the manuscript of this second edition. Lausanne HENRI J. NUSSBAUMER April 1982 Preface to the First Edition This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schnelle Fourier-Transformation |0 (DE-588)4136070-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schneller Faltungsalgorithmus |0 (DE-588)4179867-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitalfilter |0 (DE-588)4070477-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schnelle Fourier-Transformation |0 (DE-588)4136070-9 |D s |
689 | 0 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Digitalfilter |0 (DE-588)4070477-4 |D s |
689 | 1 | 1 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Digitalfilter |0 (DE-588)4070477-4 |D s |
689 | 2 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Faltung |g Mathematik |0 (DE-588)4141470-6 |D s |
689 | 3 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Schneller Faltungsalgorithmus |0 (DE-588)4179867-3 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-81897-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849251 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078483517440 |
---|---|
any_adam_object | |
author | Nussbaumer, Henri J. |
author_facet | Nussbaumer, Henri J. |
author_role | aut |
author_sort | Nussbaumer, Henri J. |
author_variant | h j n hj hjn |
building | Verbundindex |
bvnumber | BV042413758 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863860074 (DE-599)BVBBV042413758 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-642-81897-4 |
edition | Second Corrected and Updated Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04655nmm a2200757zcb4500</leader><controlfield tag="001">BV042413758</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642818974</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-81897-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540118251</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-11825-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-81897-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863860074</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413758</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nussbaumer, Henri J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Fourier Transform and Convolution Algorithms</subfield><subfield code="c">by Henri J. Nussbaumer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Corrected and Updated Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 276p. 38 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Information Sciences</subfield><subfield code="v">2</subfield><subfield code="x">0720-678X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the first edition of this book, we covered in Chapter 6 and 7 the applications to multidimensional convolutions and DFT's of the transforms which we have introduced, back in 1977, and called polynomial transforms. Since the publication of the first edition of this book, several important new developments concerning the polynomial transforms have taken place, and we have included, in this edition, a discussion of the relationship between DFT and convolution polynomial transform algorithms. This material is covered in Appendix A, along with a presentation of new convolution polynomial transform algorithms and with the application of polynomial transforms to the computation of multidimensional cosine transforms. We have found that the short convolution and polynomial product algorithms of Chap. 3 have been used extensively. This prompted us to include, in this edition, several new one-dimensional and two-dimensional polynomial product algorithms which are listed in Appendix B. Since our book is being used as part of several graduate-level courses taught at various universities, we have added, to this edition, a set of problems which cover Chaps. 2 to 8. Some of these problems serve also to illustrate some research work on DFT and convolution algorithms. I am indebted to Mrs A. Schlageter who prepared the manuscript of this second edition. Lausanne HENRI J. NUSSBAUMER April 1982 Preface to the First Edition This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnelle Fourier-Transformation</subfield><subfield code="0">(DE-588)4136070-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schneller Faltungsalgorithmus</subfield><subfield code="0">(DE-588)4179867-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitalfilter</subfield><subfield code="0">(DE-588)4070477-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schnelle Fourier-Transformation</subfield><subfield code="0">(DE-588)4136070-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Digitalfilter</subfield><subfield code="0">(DE-588)4070477-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Digitalfilter</subfield><subfield code="0">(DE-588)4070477-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Schneller Faltungsalgorithmus</subfield><subfield code="0">(DE-588)4179867-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-81897-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849251</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413758 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642818974 9783540118251 |
issn | 0720-678X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849251 |
oclc_num | 863860074 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 276p. 38 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Information Sciences |
spelling | Nussbaumer, Henri J. Verfasser aut Fast Fourier Transform and Convolution Algorithms by Henri J. Nussbaumer Second Corrected and Updated Edition Berlin, Heidelberg Springer Berlin Heidelberg 1982 1 Online-Ressource (XII, 276p. 38 illus) txt rdacontent c rdamedia cr rdacarrier Springer Series in Information Sciences 2 0720-678X In the first edition of this book, we covered in Chapter 6 and 7 the applications to multidimensional convolutions and DFT's of the transforms which we have introduced, back in 1977, and called polynomial transforms. Since the publication of the first edition of this book, several important new developments concerning the polynomial transforms have taken place, and we have included, in this edition, a discussion of the relationship between DFT and convolution polynomial transform algorithms. This material is covered in Appendix A, along with a presentation of new convolution polynomial transform algorithms and with the application of polynomial transforms to the computation of multidimensional cosine transforms. We have found that the short convolution and polynomial product algorithms of Chap. 3 have been used extensively. This prompted us to include, in this edition, several new one-dimensional and two-dimensional polynomial product algorithms which are listed in Appendix B. Since our book is being used as part of several graduate-level courses taught at various universities, we have added, to this edition, a set of problems which cover Chaps. 2 to 8. Some of these problems serve also to illustrate some research work on DFT and convolution algorithms. I am indebted to Mrs A. Schlageter who prepared the manuscript of this second edition. Lausanne HENRI J. NUSSBAUMER April 1982 Preface to the First Edition This book presents in a unified way the various fast algorithms that are used for the implementation of digital filters and the evaluation of discrete Fourier transforms Mathematics Numerical analysis Numerical Analysis Mathematik Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Schnelle Fourier-Transformation (DE-588)4136070-9 gnd rswk-swf Schneller Faltungsalgorithmus (DE-588)4179867-3 gnd rswk-swf Faltung Mathematik (DE-588)4141470-6 gnd rswk-swf Digitalfilter (DE-588)4070477-4 gnd rswk-swf Schnelle Fourier-Transformation (DE-588)4136070-9 s Algorithmus (DE-588)4001183-5 s 1\p DE-604 Digitalfilter (DE-588)4070477-4 s Faltung Mathematik (DE-588)4141470-6 s 2\p DE-604 3\p DE-604 4\p DE-604 Schneller Faltungsalgorithmus (DE-588)4179867-3 s 5\p DE-604 Fourier-Transformation (DE-588)4018014-1 s 6\p DE-604 https://doi.org/10.1007/978-3-642-81897-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nussbaumer, Henri J. Fast Fourier Transform and Convolution Algorithms Mathematics Numerical analysis Numerical Analysis Mathematik Fourier-Transformation (DE-588)4018014-1 gnd Algorithmus (DE-588)4001183-5 gnd Schnelle Fourier-Transformation (DE-588)4136070-9 gnd Schneller Faltungsalgorithmus (DE-588)4179867-3 gnd Faltung Mathematik (DE-588)4141470-6 gnd Digitalfilter (DE-588)4070477-4 gnd |
subject_GND | (DE-588)4018014-1 (DE-588)4001183-5 (DE-588)4136070-9 (DE-588)4179867-3 (DE-588)4141470-6 (DE-588)4070477-4 |
title | Fast Fourier Transform and Convolution Algorithms |
title_auth | Fast Fourier Transform and Convolution Algorithms |
title_exact_search | Fast Fourier Transform and Convolution Algorithms |
title_full | Fast Fourier Transform and Convolution Algorithms by Henri J. Nussbaumer |
title_fullStr | Fast Fourier Transform and Convolution Algorithms by Henri J. Nussbaumer |
title_full_unstemmed | Fast Fourier Transform and Convolution Algorithms by Henri J. Nussbaumer |
title_short | Fast Fourier Transform and Convolution Algorithms |
title_sort | fast fourier transform and convolution algorithms |
topic | Mathematics Numerical analysis Numerical Analysis Mathematik Fourier-Transformation (DE-588)4018014-1 gnd Algorithmus (DE-588)4001183-5 gnd Schnelle Fourier-Transformation (DE-588)4136070-9 gnd Schneller Faltungsalgorithmus (DE-588)4179867-3 gnd Faltung Mathematik (DE-588)4141470-6 gnd Digitalfilter (DE-588)4070477-4 gnd |
topic_facet | Mathematics Numerical analysis Numerical Analysis Mathematik Fourier-Transformation Algorithmus Schnelle Fourier-Transformation Schneller Faltungsalgorithmus Faltung Mathematik Digitalfilter |
url | https://doi.org/10.1007/978-3-642-81897-4 |
work_keys_str_mv | AT nussbaumerhenrij fastfouriertransformandconvolutionalgorithms |