Fractals in Science:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1994
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Applying fractal geometry to science is bringing about a breakthrough in our understanding of complex systems in nature that show self-similar or self-affine features. Self-similar and self-affine processes appear everywhere in nature, in galaxies and landscapes, in earthquakes and geological cracks, in aggregates and colloids, in rough surfaces and interfaces, in glassy materials and polymers, in proteins as well as in other large molecules. Fractal structures appear also in the human body; well known examples include the lung and the vascular system. Furthermore, fractal geometry is an important tool in the analysis of phenomena as diverse as rhythms in music melodies and in the human heart beat and DNA sequences. Since the pioneering work of B.B. Mandelbrot, this interdisciplinary field has expanded very rapidly. The scientific community applying fractal concepts is very broad and ranges from astronomers, geoscientists, physicists, chemists and engineers to biologists and those engaging in medical research |
Beschreibung: | 1 Online-Ressource (XVI, 300 p) |
ISBN: | 9783642779534 9783642779558 |
DOI: | 10.1007/978-3-642-77953-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413624 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783642779534 |c Online |9 978-3-642-77953-4 | ||
020 | |a 9783642779558 |c Print |9 978-3-642-77955-8 | ||
024 | 7 | |a 10.1007/978-3-642-77953-4 |2 doi | |
035 | |a (OCoLC)864016477 | ||
035 | |a (DE-599)BVBBV042413624 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Bunde, Armin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fractals in Science |c edited by Armin Bunde, Shlomo Havlin |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1994 | |
300 | |a 1 Online-Ressource (XVI, 300 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Applying fractal geometry to science is bringing about a breakthrough in our understanding of complex systems in nature that show self-similar or self-affine features. Self-similar and self-affine processes appear everywhere in nature, in galaxies and landscapes, in earthquakes and geological cracks, in aggregates and colloids, in rough surfaces and interfaces, in glassy materials and polymers, in proteins as well as in other large molecules. Fractal structures appear also in the human body; well known examples include the lung and the vascular system. Furthermore, fractal geometry is an important tool in the analysis of phenomena as diverse as rhythms in music melodies and in the human heart beat and DNA sequences. Since the pioneering work of B.B. Mandelbrot, this interdisciplinary field has expanded very rapidly. The scientific community applying fractal concepts is very broad and ranges from astronomers, geoscientists, physicists, chemists and engineers to biologists and those engaging in medical research | ||
650 | 4 | |a Physics | |
650 | 4 | |a Software engineering | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Surfaces and Interfaces, Thin Films | |
650 | 4 | |a Biophysics and Biological Physics | |
650 | 4 | |a Software Engineering/Programming and Operating Systems | |
650 | 4 | |a Complexity | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MS-DOS |0 (DE-588)4114641-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Macintosh |0 (DE-588)4120688-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 1 | |a MS-DOS |0 (DE-588)4114641-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 1 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 2 | 1 | |a Macintosh |0 (DE-588)4120688-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Havlin, Shlomo |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-77953-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027849117 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153078164750336 |
---|---|
any_adam_object | |
author | Bunde, Armin |
author_facet | Bunde, Armin |
author_role | aut |
author_sort | Bunde, Armin |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV042413624 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)864016477 (DE-599)BVBBV042413624 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-77953-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03578nmm a2200709zc 4500</leader><controlfield tag="001">BV042413624</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642779534</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-77953-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642779558</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-77955-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-77953-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864016477</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413624</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bunde, Armin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractals in Science</subfield><subfield code="c">edited by Armin Bunde, Shlomo Havlin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 300 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Applying fractal geometry to science is bringing about a breakthrough in our understanding of complex systems in nature that show self-similar or self-affine features. Self-similar and self-affine processes appear everywhere in nature, in galaxies and landscapes, in earthquakes and geological cracks, in aggregates and colloids, in rough surfaces and interfaces, in glassy materials and polymers, in proteins as well as in other large molecules. Fractal structures appear also in the human body; well known examples include the lung and the vascular system. Furthermore, fractal geometry is an important tool in the analysis of phenomena as diverse as rhythms in music melodies and in the human heart beat and DNA sequences. Since the pioneering work of B.B. Mandelbrot, this interdisciplinary field has expanded very rapidly. The scientific community applying fractal concepts is very broad and ranges from astronomers, geoscientists, physicists, chemists and engineers to biologists and those engaging in medical research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces and Interfaces, Thin Films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biophysics and Biological Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Software Engineering/Programming and Operating Systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MS-DOS</subfield><subfield code="0">(DE-588)4114641-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Macintosh</subfield><subfield code="0">(DE-588)4120688-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MS-DOS</subfield><subfield code="0">(DE-588)4114641-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Macintosh</subfield><subfield code="0">(DE-588)4120688-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Havlin, Shlomo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-77953-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027849117</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413624 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:53Z |
institution | BVB |
isbn | 9783642779534 9783642779558 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027849117 |
oclc_num | 864016477 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVI, 300 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Bunde, Armin Verfasser aut Fractals in Science edited by Armin Bunde, Shlomo Havlin Berlin, Heidelberg Springer Berlin Heidelberg 1994 1 Online-Ressource (XVI, 300 p) txt rdacontent c rdamedia cr rdacarrier Applying fractal geometry to science is bringing about a breakthrough in our understanding of complex systems in nature that show self-similar or self-affine features. Self-similar and self-affine processes appear everywhere in nature, in galaxies and landscapes, in earthquakes and geological cracks, in aggregates and colloids, in rough surfaces and interfaces, in glassy materials and polymers, in proteins as well as in other large molecules. Fractal structures appear also in the human body; well known examples include the lung and the vascular system. Furthermore, fractal geometry is an important tool in the analysis of phenomena as diverse as rhythms in music melodies and in the human heart beat and DNA sequences. Since the pioneering work of B.B. Mandelbrot, this interdisciplinary field has expanded very rapidly. The scientific community applying fractal concepts is very broad and ranges from astronomers, geoscientists, physicists, chemists and engineers to biologists and those engaging in medical research Physics Software engineering Mathematical physics Engineering Surfaces (Physics) Mathematical Methods in Physics Numerical and Computational Physics Surfaces and Interfaces, Thin Films Biophysics and Biological Physics Software Engineering/Programming and Operating Systems Complexity Ingenieurwissenschaften Mathematische Physik Fraktal (DE-588)4123220-3 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf MS-DOS (DE-588)4114641-4 gnd rswk-swf Macintosh (DE-588)4120688-5 gnd rswk-swf Fraktal (DE-588)4123220-3 s MS-DOS (DE-588)4114641-4 s 1\p DE-604 Computersimulation (DE-588)4148259-1 s 2\p DE-604 Macintosh (DE-588)4120688-5 s 3\p DE-604 Havlin, Shlomo Sonstige oth https://doi.org/10.1007/978-3-642-77953-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bunde, Armin Fractals in Science Physics Software engineering Mathematical physics Engineering Surfaces (Physics) Mathematical Methods in Physics Numerical and Computational Physics Surfaces and Interfaces, Thin Films Biophysics and Biological Physics Software Engineering/Programming and Operating Systems Complexity Ingenieurwissenschaften Mathematische Physik Fraktal (DE-588)4123220-3 gnd Computersimulation (DE-588)4148259-1 gnd MS-DOS (DE-588)4114641-4 gnd Macintosh (DE-588)4120688-5 gnd |
subject_GND | (DE-588)4123220-3 (DE-588)4148259-1 (DE-588)4114641-4 (DE-588)4120688-5 |
title | Fractals in Science |
title_auth | Fractals in Science |
title_exact_search | Fractals in Science |
title_full | Fractals in Science edited by Armin Bunde, Shlomo Havlin |
title_fullStr | Fractals in Science edited by Armin Bunde, Shlomo Havlin |
title_full_unstemmed | Fractals in Science edited by Armin Bunde, Shlomo Havlin |
title_short | Fractals in Science |
title_sort | fractals in science |
topic | Physics Software engineering Mathematical physics Engineering Surfaces (Physics) Mathematical Methods in Physics Numerical and Computational Physics Surfaces and Interfaces, Thin Films Biophysics and Biological Physics Software Engineering/Programming and Operating Systems Complexity Ingenieurwissenschaften Mathematische Physik Fraktal (DE-588)4123220-3 gnd Computersimulation (DE-588)4148259-1 gnd MS-DOS (DE-588)4114641-4 gnd Macintosh (DE-588)4120688-5 gnd |
topic_facet | Physics Software engineering Mathematical physics Engineering Surfaces (Physics) Mathematical Methods in Physics Numerical and Computational Physics Surfaces and Interfaces, Thin Films Biophysics and Biological Physics Software Engineering/Programming and Operating Systems Complexity Ingenieurwissenschaften Mathematische Physik Fraktal Computersimulation MS-DOS Macintosh |
url | https://doi.org/10.1007/978-3-642-77953-4 |
work_keys_str_mv | AT bundearmin fractalsinscience AT havlinshlomo fractalsinscience |