Fluid Dynamics / Strömungsmechanik:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1960
|
Schriftenreihe: | Encyclopedia of Physics / Handbuch der Physik
3 / 9 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Sect 2. 317 tinuity surfaces 1. This suggests that a wake pressure Pw be associated with each flow past a bluff body, and that a wake parameter (2. 4) which plays the same role as the cavitation parameter (2. 1), be defined for the flow. This idea has been made the basis of a modified wake theory (ef. Sect. 11) which proves to be in good qu- titative agreement with pressure and drag measurements. It should be emphasized, however, that un h like the cavitation number, the wake parameter is a quantity which is not known a priori, and must be empirically determined in each case. (3) Jet flows. The problem of jet efflux from an orifice is one of the oldest in hydrodynamics and the first to be treated by Fig. 3a. the HELMHOLTZ free streamline theory. Of particular importance for engineering applications is the discharge coefficient Cd' which is defined in terms of the discharge Q per unit time, the pressure P, and the cross-sectional area A of the orifice, by the formula, (2. 5) where e is the fluid density. Two methods of measuring Cd have been most fre quently adopted. In the first the liquid issues from an orifice in a large vessel under the influence of gravity _,-____________ . , (Fig. 3 a), while in the second it 1 L is forced out of a nozzle or pipe under high pressure (Fig. 3 b) |
Beschreibung: | 1 Online-Ressource (VIII, 816 p) |
ISBN: | 9783642459443 9783642459467 |
ISSN: | 0085-140X |
DOI: | 10.1007/978-3-642-45944-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413143 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1960 |||| o||u| ||||||eng d | ||
020 | |a 9783642459443 |c Online |9 978-3-642-45944-3 | ||
020 | |a 9783642459467 |c Print |9 978-3-642-45946-7 | ||
024 | 7 | |a 10.1007/978-3-642-45944-3 |2 doi | |
035 | |a (OCoLC)905409275 | ||
035 | |a (DE-599)BVBBV042413143 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Truesdell, C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fluid Dynamics / Strömungsmechanik |c edited by C. Truesdell |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1960 | |
300 | |a 1 Online-Ressource (VIII, 816 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of Physics / Handbuch der Physik |v 3 / 9 |x 0085-140X | |
500 | |a Sect 2. 317 tinuity surfaces 1. This suggests that a wake pressure Pw be associated with each flow past a bluff body, and that a wake parameter (2. 4) which plays the same role as the cavitation parameter (2. 1), be defined for the flow. This idea has been made the basis of a modified wake theory (ef. Sect. 11) which proves to be in good qu- titative agreement with pressure and drag measurements. It should be emphasized, however, that un h like the cavitation number, the wake parameter is a quantity which is not known a priori, and must be empirically determined in each case. (3) Jet flows. The problem of jet efflux from an orifice is one of the oldest in hydrodynamics and the first to be treated by Fig. 3a. the HELMHOLTZ free streamline theory. Of particular importance for engineering applications is the discharge coefficient Cd' which is defined in terms of the discharge Q per unit time, the pressure P, and the cross-sectional area A of the orifice, by the formula, (2. 5) where e is the fluid density. Two methods of measuring Cd have been most fre quently adopted. In the first the liquid issues from an orifice in a large vessel under the influence of gravity _,-____________ . , (Fig. 3 a), while in the second it 1 L is forced out of a nozzle or pipe under high pressure (Fig. 3 b) | ||
650 | 4 | |a Physics | |
650 | 4 | |a Physics, general | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-45944-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848636 |
Datensatz im Suchindex
_version_ | 1804153076985102336 |
---|---|
any_adam_object | |
author | Truesdell, C. |
author_facet | Truesdell, C. |
author_role | aut |
author_sort | Truesdell, C. |
author_variant | c t ct |
building | Verbundindex |
bvnumber | BV042413143 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905409275 (DE-599)BVBBV042413143 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-45944-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02538nmm a2200385zcb4500</leader><controlfield tag="001">BV042413143</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1960 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642459443</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-45944-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642459467</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-45946-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-45944-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905409275</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Truesdell, C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fluid Dynamics / Strömungsmechanik</subfield><subfield code="c">edited by C. Truesdell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1960</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 816 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of Physics / Handbuch der Physik</subfield><subfield code="v">3 / 9</subfield><subfield code="x">0085-140X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Sect 2. 317 tinuity surfaces 1. This suggests that a wake pressure Pw be associated with each flow past a bluff body, and that a wake parameter (2. 4) which plays the same role as the cavitation parameter (2. 1), be defined for the flow. This idea has been made the basis of a modified wake theory (ef. Sect. 11) which proves to be in good qu- titative agreement with pressure and drag measurements. It should be emphasized, however, that un h like the cavitation number, the wake parameter is a quantity which is not known a priori, and must be empirically determined in each case. (3) Jet flows. The problem of jet efflux from an orifice is one of the oldest in hydrodynamics and the first to be treated by Fig. 3a. the HELMHOLTZ free streamline theory. Of particular importance for engineering applications is the discharge coefficient Cd' which is defined in terms of the discharge Q per unit time, the pressure P, and the cross-sectional area A of the orifice, by the formula, (2. 5) where e is the fluid density. Two methods of measuring Cd have been most fre quently adopted. In the first the liquid issues from an orifice in a large vessel under the influence of gravity _,-____________ . , (Fig. 3 a), while in the second it 1 L is forced out of a nozzle or pipe under high pressure (Fig. 3 b)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-45944-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848636</subfield></datafield></record></collection> |
id | DE-604.BV042413143 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783642459443 9783642459467 |
issn | 0085-140X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848636 |
oclc_num | 905409275 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VIII, 816 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1960 |
publishDateSearch | 1960 |
publishDateSort | 1960 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopedia of Physics / Handbuch der Physik |
spelling | Truesdell, C. Verfasser aut Fluid Dynamics / Strömungsmechanik edited by C. Truesdell Berlin, Heidelberg Springer Berlin Heidelberg 1960 1 Online-Ressource (VIII, 816 p) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of Physics / Handbuch der Physik 3 / 9 0085-140X Sect 2. 317 tinuity surfaces 1. This suggests that a wake pressure Pw be associated with each flow past a bluff body, and that a wake parameter (2. 4) which plays the same role as the cavitation parameter (2. 1), be defined for the flow. This idea has been made the basis of a modified wake theory (ef. Sect. 11) which proves to be in good qu- titative agreement with pressure and drag measurements. It should be emphasized, however, that un h like the cavitation number, the wake parameter is a quantity which is not known a priori, and must be empirically determined in each case. (3) Jet flows. The problem of jet efflux from an orifice is one of the oldest in hydrodynamics and the first to be treated by Fig. 3a. the HELMHOLTZ free streamline theory. Of particular importance for engineering applications is the discharge coefficient Cd' which is defined in terms of the discharge Q per unit time, the pressure P, and the cross-sectional area A of the orifice, by the formula, (2. 5) where e is the fluid density. Two methods of measuring Cd have been most fre quently adopted. In the first the liquid issues from an orifice in a large vessel under the influence of gravity _,-____________ . , (Fig. 3 a), while in the second it 1 L is forced out of a nozzle or pipe under high pressure (Fig. 3 b) Physics Physics, general https://doi.org/10.1007/978-3-642-45944-3 Verlag Volltext |
spellingShingle | Truesdell, C. Fluid Dynamics / Strömungsmechanik Physics Physics, general |
title | Fluid Dynamics / Strömungsmechanik |
title_auth | Fluid Dynamics / Strömungsmechanik |
title_exact_search | Fluid Dynamics / Strömungsmechanik |
title_full | Fluid Dynamics / Strömungsmechanik edited by C. Truesdell |
title_fullStr | Fluid Dynamics / Strömungsmechanik edited by C. Truesdell |
title_full_unstemmed | Fluid Dynamics / Strömungsmechanik edited by C. Truesdell |
title_short | Fluid Dynamics / Strömungsmechanik |
title_sort | fluid dynamics stromungsmechanik |
topic | Physics Physics, general |
topic_facet | Physics Physics, general |
url | https://doi.org/10.1007/978-3-642-45944-3 |
work_keys_str_mv | AT truesdellc fluiddynamicsstromungsmechanik |