Nuclear Reactions II: Theory / Kernreaktionen II: Theorie:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1959
|
Schriftenreihe: | Encyclopedia of Physics / Handbuch der Physik
8 / 41 / 1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (·m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e- ;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L |
Beschreibung: | 1 Online-Ressource (VII, 580 p) |
ISBN: | 9783642459238 9783642459252 |
ISSN: | 0085-140X |
DOI: | 10.1007/978-3-642-45923-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042413139 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1959 |||| o||u| ||||||eng d | ||
020 | |a 9783642459238 |c Online |9 978-3-642-45923-8 | ||
020 | |a 9783642459252 |c Print |9 978-3-642-45925-2 | ||
024 | 7 | |a 10.1007/978-3-642-45923-8 |2 doi | |
035 | |a (OCoLC)905354624 | ||
035 | |a (DE-599)BVBBV042413139 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Breit, G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Nuclear Reactions II: Theory / Kernreaktionen II: Theorie |c by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1959 | |
300 | |a 1 Online-Ressource (VII, 580 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of Physics / Handbuch der Physik |v 8 / 41 / 1 |x 0085-140X | |
500 | |a 449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (·m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e- ;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L | ||
650 | 4 | |a Physics | |
650 | 4 | |a Physics, general | |
700 | 1 | |a Hull, M. H. |e Sonstige |4 oth | |
700 | 1 | |a McIntosh, J. S. |e Sonstige |4 oth | |
700 | 1 | |a Gluckstern, R. L. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-45923-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848632 |
Datensatz im Suchindex
_version_ | 1804153076977762304 |
---|---|
any_adam_object | |
author | Breit, G. |
author_facet | Breit, G. |
author_role | aut |
author_sort | Breit, G. |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV042413139 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905354624 (DE-599)BVBBV042413139 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-45923-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02678nmm a2200421zcb4500</leader><controlfield tag="001">BV042413139</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1959 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642459238</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-45923-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642459252</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-45925-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-45923-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905354624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413139</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Breit, G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nuclear Reactions II: Theory / Kernreaktionen II: Theorie</subfield><subfield code="c">by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1959</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 580 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of Physics / Handbuch der Physik</subfield><subfield code="v">8 / 41 / 1</subfield><subfield code="x">0085-140X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (·m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e- ;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hull, M. H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McIntosh, J. S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gluckstern, R. L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-45923-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848632</subfield></datafield></record></collection> |
id | DE-604.BV042413139 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783642459238 9783642459252 |
issn | 0085-140X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848632 |
oclc_num | 905354624 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VII, 580 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1959 |
publishDateSearch | 1959 |
publishDateSort | 1959 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Encyclopedia of Physics / Handbuch der Physik |
spelling | Breit, G. Verfasser aut Nuclear Reactions II: Theory / Kernreaktionen II: Theorie by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern Berlin, Heidelberg Springer Berlin Heidelberg 1959 1 Online-Ressource (VII, 580 p) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of Physics / Handbuch der Physik 8 / 41 / 1 0085-140X 449 one finds that for y = Fo (e) C= :n; V3 [Po (2'Yj) 3 -kjF(i) + (2'Yj)! Fd (2'Yj) 3 -ijF (·m, } 1 ( 14.17) C2 = :n; [ - (2'Yj)! Fd (2'Yj) 3 -ijF(i) + Fo (2'Yj) 3 -~;r(i)J, and if y is to be Go(e), C and Chave the same form with Go (2'Yj) replacing Po (2'Yj) 1 2 and G~(2'Yj) replacing Fd(2'Yj). The values of the functions at eo =2'Yj may be ob tained from (14.8). 1 J. K. TYSON has employed the modified Hankel functions of order one third 2 as solutions of (13.4) to obtain expressions for the Coulomb functions for L =0 which converge near e =2'Yj. His results appear as linear combinations of the real and imaginary parts of n ~(x) = (12)!e- ;/6 [A;{- x) - iB;(-x)J, (14.18) and its derivatives multiplying power series in x = (e - 2'Yj)j(2'Yj)1. For values 1 away from the turning point for L =0, TYSON has obtained forms for Po{e) and Go(e) which are similar to (13.1) to (13.3). The JWKB approximation is again the leading term, and some higher order corrections are given. Expressions similar to Eqs. (14.11) and (14.12) have been obtained by T.D. 3 NEWTON employing the integral representation of (4.4). His results give re presentations of FL(e), Gde) in the vicinity of e=2'Yj [whereas (14.11), (14.12) converge near e=eLJ when L Physics Physics, general Hull, M. H. Sonstige oth McIntosh, J. S. Sonstige oth Gluckstern, R. L. Sonstige oth https://doi.org/10.1007/978-3-642-45923-8 Verlag Volltext |
spellingShingle | Breit, G. Nuclear Reactions II: Theory / Kernreaktionen II: Theorie Physics Physics, general |
title | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie |
title_auth | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie |
title_exact_search | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie |
title_full | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern |
title_fullStr | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern |
title_full_unstemmed | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie by G. Breit, M. H. Hull, J. S. McIntosh, R. L. Gluckstern |
title_short | Nuclear Reactions II: Theory / Kernreaktionen II: Theorie |
title_sort | nuclear reactions ii theory kernreaktionen ii theorie |
topic | Physics Physics, general |
topic_facet | Physics Physics, general |
url | https://doi.org/10.1007/978-3-642-45923-8 |
work_keys_str_mv | AT breitg nuclearreactionsiitheorykernreaktioneniitheorie AT hullmh nuclearreactionsiitheorykernreaktioneniitheorie AT mcintoshjs nuclearreactionsiitheorykernreaktioneniitheorie AT glucksternrl nuclearreactionsiitheorykernreaktioneniitheorie |