Path Integrals in Field Theory: An Introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schriftenreihe: | Advanced Texts in Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This short and concise textbook is intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. Path Integrals in Field Theory paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum mechanics, it complements the author’s monograph Fields, Symmetries, and Quarks (Springer, 1999) |
Beschreibung: | 1 Online-Ressource (XII, 213p) |
ISBN: | 9783642187971 9783540403821 |
ISSN: | 1439-2674 |
DOI: | 10.1007/978-3-642-18797-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413103 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783642187971 |c Online |9 978-3-642-18797-1 | ||
020 | |a 9783540403821 |c Print |9 978-3-540-40382-1 | ||
024 | 7 | |a 10.1007/978-3-642-18797-1 |2 doi | |
035 | |a (OCoLC)725023441 | ||
035 | |a (DE-599)BVBBV042413103 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 539.72 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Mosel, Ulrich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Path Integrals in Field Theory |b An Introduction |c by Ulrich Mosel |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XII, 213p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Texts in Physics |x 1439-2674 | |
500 | |a This short and concise textbook is intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. Path Integrals in Field Theory paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum mechanics, it complements the author’s monograph Fields, Symmetries, and Quarks (Springer, 1999) | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Elementary Particles, Quantum Field Theory | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | 1 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-18797-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848596 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153076899119104 |
---|---|
any_adam_object | |
author | Mosel, Ulrich |
author_facet | Mosel, Ulrich |
author_role | aut |
author_sort | Mosel, Ulrich |
author_variant | u m um |
building | Verbundindex |
bvnumber | BV042413103 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)725023441 (DE-599)BVBBV042413103 |
dewey-full | 539.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.72 |
dewey-search | 539.72 |
dewey-sort | 3539.72 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-18797-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02477nmm a2200517zc 4500</leader><controlfield tag="001">BV042413103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642187971</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-18797-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540403821</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-40382-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-18797-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725023441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mosel, Ulrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Path Integrals in Field Theory</subfield><subfield code="b">An Introduction</subfield><subfield code="c">by Ulrich Mosel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 213p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Texts in Physics</subfield><subfield code="x">1439-2674</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This short and concise textbook is intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. Path Integrals in Field Theory paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum mechanics, it complements the author’s monograph Fields, Symmetries, and Quarks (Springer, 1999)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-18797-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848596</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413103 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783642187971 9783540403821 |
issn | 1439-2674 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848596 |
oclc_num | 725023441 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 213p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Advanced Texts in Physics |
spelling | Mosel, Ulrich Verfasser aut Path Integrals in Field Theory An Introduction by Ulrich Mosel Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XII, 213p) txt rdacontent c rdamedia cr rdacarrier Advanced Texts in Physics 1439-2674 This short and concise textbook is intended as a primer on path integral formalism both in classical and quantum field theories, although emphasis is on the latter. It is ideally suited as an intensive one-semester course, delivering the basics needed by readers to follow developments in field theory. Path Integrals in Field Theory paves the way for both more rigorous studies in fundamental mathematical issues as well as for applications in hadron, particle and nuclear physics, thus addressing students in mathematical and theoretical physics alike. Assuming some background in relativistic quantum mechanics, it complements the author’s monograph Fields, Symmetries, and Quarks (Springer, 1999) Physics Mathematical physics Quantum theory Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s Pfadintegral (DE-588)4173973-5 s 1\p DE-604 https://doi.org/10.1007/978-3-642-18797-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mosel, Ulrich Path Integrals in Field Theory An Introduction Physics Mathematical physics Quantum theory Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantenfeldtheorie (DE-588)4047984-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4047984-5 (DE-588)4173973-5 |
title | Path Integrals in Field Theory An Introduction |
title_auth | Path Integrals in Field Theory An Introduction |
title_exact_search | Path Integrals in Field Theory An Introduction |
title_full | Path Integrals in Field Theory An Introduction by Ulrich Mosel |
title_fullStr | Path Integrals in Field Theory An Introduction by Ulrich Mosel |
title_full_unstemmed | Path Integrals in Field Theory An Introduction by Ulrich Mosel |
title_short | Path Integrals in Field Theory |
title_sort | path integrals in field theory an introduction |
title_sub | An Introduction |
topic | Physics Mathematical physics Quantum theory Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantenfeldtheorie (DE-588)4047984-5 gnd Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Physics Mathematical physics Quantum theory Elementary Particles, Quantum Field Theory Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantenfeldtheorie Pfadintegral |
url | https://doi.org/10.1007/978-3-642-18797-1 |
work_keys_str_mv | AT moselulrich pathintegralsinfieldtheoryanintroduction |