Conjugate Gradient Algorithms and Finite Element Methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schriftenreihe: | Scientific Computation
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve differential equations and multidimensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing |
Beschreibung: | 1 Online-Ressource (XV, 384 p) |
ISBN: | 9783642185601 9783642621598 |
ISSN: | 1434-8322 |
DOI: | 10.1007/978-3-642-18560-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413097 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783642185601 |c Online |9 978-3-642-18560-1 | ||
020 | |a 9783642621598 |c Print |9 978-3-642-62159-8 | ||
024 | 7 | |a 10.1007/978-3-642-18560-1 |2 doi | |
035 | |a (OCoLC)725374838 | ||
035 | |a (DE-599)BVBBV042413097 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Křížek, Michal |e Verfasser |4 aut | |
245 | 1 | 0 | |a Conjugate Gradient Algorithms and Finite Element Methods |c edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XV, 384 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Scientific Computation |x 1434-8322 | |
500 | |a The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve differential equations and multidimensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing | ||
650 | 4 | |a Physics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Engineering | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Computational Science and Engineering | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Informatik | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konjugierte-Gradienten-Methode |0 (DE-588)4255670-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Konjugierte-Gradienten-Methode |0 (DE-588)4255670-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Neittaanmäki, Pekka |e Sonstige |4 oth | |
700 | 1 | |a Korotov, Sergey |e Sonstige |4 oth | |
700 | 1 | |a Glowinski, Roland |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-18560-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848590 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153076892827648 |
---|---|
any_adam_object | |
author | Křížek, Michal |
author_facet | Křížek, Michal |
author_role | aut |
author_sort | Křížek, Michal |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV042413097 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)725374838 (DE-599)BVBBV042413097 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-642-18560-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03092nmm a2200601zc 4500</leader><controlfield tag="001">BV042413097</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642185601</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-18560-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642621598</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-62159-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-18560-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725374838</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413097</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Křížek, Michal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conjugate Gradient Algorithms and Finite Element Methods</subfield><subfield code="c">edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 384 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Scientific Computation</subfield><subfield code="x">1434-8322</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve differential equations and multidimensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konjugierte-Gradienten-Methode</subfield><subfield code="0">(DE-588)4255670-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konjugierte-Gradienten-Methode</subfield><subfield code="0">(DE-588)4255670-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neittaanmäki, Pekka</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korotov, Sergey</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Glowinski, Roland</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-18560-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848590</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413097 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783642185601 9783642621598 |
issn | 1434-8322 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848590 |
oclc_num | 725374838 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 384 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Scientific Computation |
spelling | Křížek, Michal Verfasser aut Conjugate Gradient Algorithms and Finite Element Methods edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XV, 384 p) txt rdacontent c rdamedia cr rdacarrier Scientific Computation 1434-8322 The position taken in this collection of pedagogically written essays is that conjugate gradient algorithms and finite element methods complement each other extremely well. Via their combinations practitioners have been able to solve differential equations and multidimensional problems modeled by ordinary or partial differential equations and inequalities, not necessarily linear, optimal control and optimal design being part of these problems. The aim of this book is to present both methods in the context of complicated problems modeled by linear and nonlinear partial differential equations, to provide an in-depth discussion on their implementation aspects. The authors show that conjugate gradient methods and finite element methods apply to the solution of real-life problems. They address graduate students as well as experts in scientific computing Physics Computer science Engineering Numerical and Computational Physics Computational Science and Engineering Fluid- and Aerodynamics Computational Intelligence Informatik Ingenieurwissenschaften Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Konjugierte-Gradienten-Methode (DE-588)4255670-3 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 Konjugierte-Gradienten-Methode (DE-588)4255670-3 s 2\p DE-604 Neittaanmäki, Pekka Sonstige oth Korotov, Sergey Sonstige oth Glowinski, Roland Sonstige oth https://doi.org/10.1007/978-3-642-18560-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Křížek, Michal Conjugate Gradient Algorithms and Finite Element Methods Physics Computer science Engineering Numerical and Computational Physics Computational Science and Engineering Fluid- and Aerodynamics Computational Intelligence Informatik Ingenieurwissenschaften Finite-Elemente-Methode (DE-588)4017233-8 gnd Konjugierte-Gradienten-Methode (DE-588)4255670-3 gnd |
subject_GND | (DE-588)4017233-8 (DE-588)4255670-3 |
title | Conjugate Gradient Algorithms and Finite Element Methods |
title_auth | Conjugate Gradient Algorithms and Finite Element Methods |
title_exact_search | Conjugate Gradient Algorithms and Finite Element Methods |
title_full | Conjugate Gradient Algorithms and Finite Element Methods edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski |
title_fullStr | Conjugate Gradient Algorithms and Finite Element Methods edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski |
title_full_unstemmed | Conjugate Gradient Algorithms and Finite Element Methods edited by Michal Křížek, Pekka Neittaanmäki, Sergey Korotov, Roland Glowinski |
title_short | Conjugate Gradient Algorithms and Finite Element Methods |
title_sort | conjugate gradient algorithms and finite element methods |
topic | Physics Computer science Engineering Numerical and Computational Physics Computational Science and Engineering Fluid- and Aerodynamics Computational Intelligence Informatik Ingenieurwissenschaften Finite-Elemente-Methode (DE-588)4017233-8 gnd Konjugierte-Gradienten-Methode (DE-588)4255670-3 gnd |
topic_facet | Physics Computer science Engineering Numerical and Computational Physics Computational Science and Engineering Fluid- and Aerodynamics Computational Intelligence Informatik Ingenieurwissenschaften Finite-Elemente-Methode Konjugierte-Gradienten-Methode |
url | https://doi.org/10.1007/978-3-642-18560-1 |
work_keys_str_mv | AT krizekmichal conjugategradientalgorithmsandfiniteelementmethods AT neittaanmakipekka conjugategradientalgorithmsandfiniteelementmethods AT korotovsergey conjugategradientalgorithmsandfiniteelementmethods AT glowinskiroland conjugategradientalgorithmsandfiniteelementmethods |