Schrödinger Operators: With Applications to Quantum Mechanics and Global Geometry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1987
|
Ausgabe: | 2 |
Schriftenreihe: | Theoretical,Mathematical Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A complete understanding of Schrödinger operators is a necessary prerequisite for unveiling the physics of nonrelativistic quanturn mechanics. Furthermore recent research shows that it also helps to deepen our insight into global differential geometry. This monograph written for both graduate students and researchers summarizes and synthesizes the theory of Schrödinger operators emphasizing the progress made in the last decade by Lieb, Enss, Witten and others. Besides general properties, the book covers, in particular, multiparticle quantum mechanics including bound states of Coulomb systems and scattering theory, quantum mechanics in constant electric and magnetic fields, Schrödinger operators with random and almost periodic potentials and, finally, Schrödinger operator methods in differential geometry to prove the Morse inequalities and the index theorem |
Beschreibung: | 1 Online-Ressource (IX, 319 pp. 2 figs) |
ISBN: | 9783540775225 9783540167587 |
ISSN: | 0172-5998 |
DOI: | 10.1007/978-3-540-77522-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042413089 | ||
003 | DE-604 | ||
005 | 20180529 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1987 |||| o||u| ||||||eng d | ||
020 | |a 9783540775225 |c Online |9 978-3-540-77522-5 | ||
020 | |a 9783540167587 |c Print |9 978-3-540-16758-7 | ||
024 | 7 | |a 10.1007/978-3-540-77522-5 |2 doi | |
035 | |a (OCoLC)905419292 | ||
035 | |a (DE-599)BVBBV042413089 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a UK 1200 |0 (DE-625)145792: |2 rvk | ||
084 | |a MAT 358f |2 stub | ||
084 | |a PHY 022f |2 stub | ||
084 | |a PHY 013f |2 stub | ||
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Cycon, Hans L. |d 1942- |e Verfasser |0 (DE-588)141647086 |4 aut | |
245 | 1 | 0 | |a Schrödinger Operators |b With Applications to Quantum Mechanics and Global Geometry |c by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon |
250 | |a 2 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1987 | |
300 | |a 1 Online-Ressource (IX, 319 pp. 2 figs) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Theoretical,Mathematical Physics |x 0172-5998 | |
500 | |a A complete understanding of Schrödinger operators is a necessary prerequisite for unveiling the physics of nonrelativistic quanturn mechanics. Furthermore recent research shows that it also helps to deepen our insight into global differential geometry. This monograph written for both graduate students and researchers summarizes and synthesizes the theory of Schrödinger operators emphasizing the progress made in the last decade by Lieb, Enss, Witten and others. Besides general properties, the book covers, in particular, multiparticle quantum mechanics including bound states of Coulomb systems and scattering theory, quantum mechanics in constant electric and magnetic fields, Schrödinger operators with random and almost periodic potentials and, finally, Schrödinger operator methods in differential geometry to prove the Morse inequalities and the index theorem | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum computing | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Computing, Information and Physics | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetfeld |0 (DE-588)4074450-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spektraltheorie |0 (DE-588)4116561-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 0 | 1 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 2 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 3 | 1 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 4 | 1 | |a Globale Riemannsche Geometrie |0 (DE-588)4157622-6 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 5 | 1 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 5 | 2 | |a Magnetfeld |0 (DE-588)4074450-4 |D s |
689 | 5 | |5 DE-604 | |
689 | 6 | 0 | |a Spektraltheorie |0 (DE-588)4116561-5 |D s |
689 | 6 | 1 | |a Schrödinger-Gleichung |0 (DE-588)4053332-3 |D s |
689 | 6 | |5 DE-604 | |
700 | 1 | |a Froese, Richard G. |e Sonstige |4 oth | |
700 | 1 | |a Kirsch, Werner |d 1956- |e Sonstige |0 (DE-588)141337559 |4 oth | |
700 | 1 | |a Simon, Barry |d 1946- |e Sonstige |0 (DE-588)134200195 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-03719-669-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-77522-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848582 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153076868710400 |
---|---|
any_adam_object | |
author | Cycon, Hans L. 1942- |
author_GND | (DE-588)141647086 (DE-588)141337559 (DE-588)134200195 |
author_facet | Cycon, Hans L. 1942- |
author_role | aut |
author_sort | Cycon, Hans L. 1942- |
author_variant | h l c hl hlc |
building | Verbundindex |
bvnumber | BV042413089 |
classification_rvk | SK 620 UK 1200 |
classification_tum | MAT 358f PHY 022f PHY 013f PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905419292 (DE-599)BVBBV042413089 |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-540-77522-5 |
edition | 2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04895nmm a2200973zc 4500</leader><controlfield tag="001">BV042413089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180529 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540775225</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-77522-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540167587</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-16758-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-77522-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905419292</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042413089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1200</subfield><subfield code="0">(DE-625)145792:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 358f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 022f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 013f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cycon, Hans L.</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141647086</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Schrödinger Operators</subfield><subfield code="b">With Applications to Quantum Mechanics and Global Geometry</subfield><subfield code="c">by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 319 pp. 2 figs)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Theoretical,Mathematical Physics</subfield><subfield code="x">0172-5998</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A complete understanding of Schrödinger operators is a necessary prerequisite for unveiling the physics of nonrelativistic quanturn mechanics. Furthermore recent research shows that it also helps to deepen our insight into global differential geometry. This monograph written for both graduate students and researchers summarizes and synthesizes the theory of Schrödinger operators emphasizing the progress made in the last decade by Lieb, Enss, Witten and others. Besides general properties, the book covers, in particular, multiparticle quantum mechanics including bound states of Coulomb systems and scattering theory, quantum mechanics in constant electric and magnetic fields, Schrödinger operators with random and almost periodic potentials and, finally, Schrödinger operator methods in differential geometry to prove the Morse inequalities and the index theorem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Computing, Information and Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Globale Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4157622-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="2"><subfield code="a">Magnetfeld</subfield><subfield code="0">(DE-588)4074450-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Spektraltheorie</subfield><subfield code="0">(DE-588)4116561-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2="1"><subfield code="a">Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4053332-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Froese, Richard G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirsch, Werner</subfield><subfield code="d">1956-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)141337559</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simon, Barry</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)134200195</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03719-669-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-77522-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848582</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042413089 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:52Z |
institution | BVB |
isbn | 9783540775225 9783540167587 |
issn | 0172-5998 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848582 |
oclc_num | 905419292 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (IX, 319 pp. 2 figs) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Theoretical,Mathematical Physics |
spelling | Cycon, Hans L. 1942- Verfasser (DE-588)141647086 aut Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon 2 Berlin, Heidelberg Springer Berlin Heidelberg 1987 1 Online-Ressource (IX, 319 pp. 2 figs) txt rdacontent c rdamedia cr rdacarrier Theoretical,Mathematical Physics 0172-5998 A complete understanding of Schrödinger operators is a necessary prerequisite for unveiling the physics of nonrelativistic quanturn mechanics. Furthermore recent research shows that it also helps to deepen our insight into global differential geometry. This monograph written for both graduate students and researchers summarizes and synthesizes the theory of Schrödinger operators emphasizing the progress made in the last decade by Lieb, Enss, Witten and others. Besides general properties, the book covers, in particular, multiparticle quantum mechanics including bound states of Coulomb systems and scattering theory, quantum mechanics in constant electric and magnetic fields, Schrödinger operators with random and almost periodic potentials and, finally, Schrödinger operator methods in differential geometry to prove the Morse inequalities and the index theorem Physics Quantum theory Quantum computing Quantum Physics Quantum Computing, Information and Physics Quantentheorie Geometrie (DE-588)4020236-7 gnd rswk-swf Schrödinger-Gleichung (DE-588)4053332-3 gnd rswk-swf Globale Riemannsche Geometrie (DE-588)4157622-6 gnd rswk-swf Magnetfeld (DE-588)4074450-4 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Spektraltheorie (DE-588)4116561-5 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 s Globale Differentialgeometrie (DE-588)4021286-5 s 1\p DE-604 Quantenmechanik (DE-588)4047989-4 s 2\p DE-604 Geometrie (DE-588)4020236-7 s 3\p DE-604 Quantentheorie (DE-588)4047992-4 s 4\p DE-604 Globale Riemannsche Geometrie (DE-588)4157622-6 s 5\p DE-604 Spektraltheorie (DE-588)4116561-5 s Magnetfeld (DE-588)4074450-4 s DE-604 Schrödinger-Gleichung (DE-588)4053332-3 s Froese, Richard G. Sonstige oth Kirsch, Werner 1956- Sonstige (DE-588)141337559 oth Simon, Barry 1946- Sonstige (DE-588)134200195 oth Erscheint auch als Online-Ausgabe 978-3-03719-669-4 https://doi.org/10.1007/978-3-540-77522-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cycon, Hans L. 1942- Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry Physics Quantum theory Quantum computing Quantum Physics Quantum Computing, Information and Physics Quantentheorie Geometrie (DE-588)4020236-7 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd Globale Riemannsche Geometrie (DE-588)4157622-6 gnd Magnetfeld (DE-588)4074450-4 gnd Quantentheorie (DE-588)4047992-4 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd Spektraltheorie (DE-588)4116561-5 gnd Quantenmechanik (DE-588)4047989-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
subject_GND | (DE-588)4020236-7 (DE-588)4053332-3 (DE-588)4157622-6 (DE-588)4074450-4 (DE-588)4047992-4 (DE-588)4021286-5 (DE-588)4116561-5 (DE-588)4047989-4 (DE-588)4072278-8 |
title | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry |
title_auth | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry |
title_exact_search | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry |
title_full | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon |
title_fullStr | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon |
title_full_unstemmed | Schrödinger Operators With Applications to Quantum Mechanics and Global Geometry by Hans L. Cycon, Richard G. Froese, Werner Kirsch, Barry Simon, Hans L. Cycon |
title_short | Schrödinger Operators |
title_sort | schrodinger operators with applications to quantum mechanics and global geometry |
title_sub | With Applications to Quantum Mechanics and Global Geometry |
topic | Physics Quantum theory Quantum computing Quantum Physics Quantum Computing, Information and Physics Quantentheorie Geometrie (DE-588)4020236-7 gnd Schrödinger-Gleichung (DE-588)4053332-3 gnd Globale Riemannsche Geometrie (DE-588)4157622-6 gnd Magnetfeld (DE-588)4074450-4 gnd Quantentheorie (DE-588)4047992-4 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd Spektraltheorie (DE-588)4116561-5 gnd Quantenmechanik (DE-588)4047989-4 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
topic_facet | Physics Quantum theory Quantum computing Quantum Physics Quantum Computing, Information and Physics Quantentheorie Geometrie Schrödinger-Gleichung Globale Riemannsche Geometrie Magnetfeld Globale Differentialgeometrie Spektraltheorie Quantenmechanik Hamilton-Operator |
url | https://doi.org/10.1007/978-3-540-77522-5 |
work_keys_str_mv | AT cyconhansl schrodingeroperatorswithapplicationstoquantummechanicsandglobalgeometry AT froeserichardg schrodingeroperatorswithapplicationstoquantummechanicsandglobalgeometry AT kirschwerner schrodingeroperatorswithapplicationstoquantummechanicsandglobalgeometry AT simonbarry schrodingeroperatorswithapplicationstoquantummechanicsandglobalgeometry |