Matrix Theory of Photoelasticity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1979
|
Schriftenreihe: | Springer Series in Optical Sciences
11 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Photoelasticity as an experimental method for analyzing stress fields in mechanics was developed in the early thirties by the pioneering works of Mesnager in France and Coker and Filon in England. Almost concurrently, Föppl, Mesmer, and Oppel in Germany contributed significantly to what turned out to be an amazing development. Indeed, in the fifties and sixties a tremendous number of scientific papers and monographs appeared, all over the world, dealing with various aspects of the method and its applications in experimental stress analysis. All of these contributions were based on the so-called Neumann-Maxwell stress-opticallaw; they were developed by means of the classical methods of vector analysis and analytic geometry, using the conventionallight-vector concept. This way of treating problems of mechanics by photoelasticity indicated many shortcomings and drawbacks of this classical method, especially when three-dimensional problems of elasticity had to be treated and when complicated load and geometry situations existed. Meanwhile, the idea of using the Poincare sphere for representing any polarization profile in photoelastic applications was introduced by Robert in France and Aben in the USSR, in order to deal with problems of polarization oflight passing through aseries of optical elements (retarders andjor rotators). Although the Poincare-sphere presentation of any polarization profile con stitutes a powerful and elegant method, it exhibits the difficulty of requiring manipulations in three-dimensional space, on the surface of the unit sphere. However, other graphical methods have been developed to bypass this difficulty |
Beschreibung: | 1 Online-Ressource (XI, 354 p) |
ISBN: | 9783540357896 9783662158074 |
ISSN: | 0342-4111 |
DOI: | 10.1007/978-3-540-35789-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042412779 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1979 |||| o||u| ||||||eng d | ||
020 | |a 9783540357896 |c Online |9 978-3-540-35789-6 | ||
020 | |a 9783662158074 |c Print |9 978-3-662-15807-4 | ||
024 | 7 | |a 10.1007/978-3-540-35789-6 |2 doi | |
035 | |a (OCoLC)860044672 | ||
035 | |a (DE-599)BVBBV042412779 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Theocaris, Pericles S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Matrix Theory of Photoelasticity |c by Pericles S. Theocaris, Emmanuel E. Gdoutos |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1979 | |
300 | |a 1 Online-Ressource (XI, 354 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Optical Sciences |v 11 |x 0342-4111 | |
500 | |a Photoelasticity as an experimental method for analyzing stress fields in mechanics was developed in the early thirties by the pioneering works of Mesnager in France and Coker and Filon in England. Almost concurrently, Föppl, Mesmer, and Oppel in Germany contributed significantly to what turned out to be an amazing development. Indeed, in the fifties and sixties a tremendous number of scientific papers and monographs appeared, all over the world, dealing with various aspects of the method and its applications in experimental stress analysis. All of these contributions were based on the so-called Neumann-Maxwell stress-opticallaw; they were developed by means of the classical methods of vector analysis and analytic geometry, using the conventionallight-vector concept. This way of treating problems of mechanics by photoelasticity indicated many shortcomings and drawbacks of this classical method, especially when three-dimensional problems of elasticity had to be treated and when complicated load and geometry situations existed. Meanwhile, the idea of using the Poincare sphere for representing any polarization profile in photoelastic applications was introduced by Robert in France and Aben in the USSR, in order to deal with problems of polarization oflight passing through aseries of optical elements (retarders andjor rotators). Although the Poincare-sphere presentation of any polarization profile con stitutes a powerful and elegant method, it exhibits the difficulty of requiring manipulations in three-dimensional space, on the surface of the unit sphere. However, other graphical methods have been developed to bypass this difficulty | ||
650 | 4 | |a Physics | |
650 | 4 | |a Physics, general | |
650 | 0 | 7 | |a Spannungsoptik |0 (DE-588)4056002-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizentheorie |0 (DE-588)4128970-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Photoelastizität |0 (DE-588)4045883-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Photoelastizität |0 (DE-588)4045883-0 |D s |
689 | 0 | 1 | |a Matrizentheorie |0 (DE-588)4128970-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Spannungsoptik |0 (DE-588)4056002-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gdoutos, Emmanuel E. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-35789-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027848272 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153076028801024 |
---|---|
any_adam_object | |
author | Theocaris, Pericles S. |
author_facet | Theocaris, Pericles S. |
author_role | aut |
author_sort | Theocaris, Pericles S. |
author_variant | p s t ps pst |
building | Verbundindex |
bvnumber | BV042412779 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)860044672 (DE-599)BVBBV042412779 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-3-540-35789-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03546nmm a2200517zcb4500</leader><controlfield tag="001">BV042412779</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1979 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540357896</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-35789-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662158074</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-15807-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-35789-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860044672</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042412779</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Theocaris, Pericles S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix Theory of Photoelasticity</subfield><subfield code="c">by Pericles S. Theocaris, Emmanuel E. Gdoutos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 354 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Optical Sciences</subfield><subfield code="v">11</subfield><subfield code="x">0342-4111</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Photoelasticity as an experimental method for analyzing stress fields in mechanics was developed in the early thirties by the pioneering works of Mesnager in France and Coker and Filon in England. Almost concurrently, Föppl, Mesmer, and Oppel in Germany contributed significantly to what turned out to be an amazing development. Indeed, in the fifties and sixties a tremendous number of scientific papers and monographs appeared, all over the world, dealing with various aspects of the method and its applications in experimental stress analysis. All of these contributions were based on the so-called Neumann-Maxwell stress-opticallaw; they were developed by means of the classical methods of vector analysis and analytic geometry, using the conventionallight-vector concept. This way of treating problems of mechanics by photoelasticity indicated many shortcomings and drawbacks of this classical method, especially when three-dimensional problems of elasticity had to be treated and when complicated load and geometry situations existed. Meanwhile, the idea of using the Poincare sphere for representing any polarization profile in photoelastic applications was introduced by Robert in France and Aben in the USSR, in order to deal with problems of polarization oflight passing through aseries of optical elements (retarders andjor rotators). Although the Poincare-sphere presentation of any polarization profile con stitutes a powerful and elegant method, it exhibits the difficulty of requiring manipulations in three-dimensional space, on the surface of the unit sphere. However, other graphical methods have been developed to bypass this difficulty</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics, general</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spannungsoptik</subfield><subfield code="0">(DE-588)4056002-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photoelastizität</subfield><subfield code="0">(DE-588)4045883-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Photoelastizität</subfield><subfield code="0">(DE-588)4045883-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Matrizentheorie</subfield><subfield code="0">(DE-588)4128970-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spannungsoptik</subfield><subfield code="0">(DE-588)4056002-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gdoutos, Emmanuel E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-35789-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027848272</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042412779 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:51Z |
institution | BVB |
isbn | 9783540357896 9783662158074 |
issn | 0342-4111 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027848272 |
oclc_num | 860044672 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XI, 354 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Optical Sciences |
spelling | Theocaris, Pericles S. Verfasser aut Matrix Theory of Photoelasticity by Pericles S. Theocaris, Emmanuel E. Gdoutos Berlin, Heidelberg Springer Berlin Heidelberg 1979 1 Online-Ressource (XI, 354 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Optical Sciences 11 0342-4111 Photoelasticity as an experimental method for analyzing stress fields in mechanics was developed in the early thirties by the pioneering works of Mesnager in France and Coker and Filon in England. Almost concurrently, Föppl, Mesmer, and Oppel in Germany contributed significantly to what turned out to be an amazing development. Indeed, in the fifties and sixties a tremendous number of scientific papers and monographs appeared, all over the world, dealing with various aspects of the method and its applications in experimental stress analysis. All of these contributions were based on the so-called Neumann-Maxwell stress-opticallaw; they were developed by means of the classical methods of vector analysis and analytic geometry, using the conventionallight-vector concept. This way of treating problems of mechanics by photoelasticity indicated many shortcomings and drawbacks of this classical method, especially when three-dimensional problems of elasticity had to be treated and when complicated load and geometry situations existed. Meanwhile, the idea of using the Poincare sphere for representing any polarization profile in photoelastic applications was introduced by Robert in France and Aben in the USSR, in order to deal with problems of polarization oflight passing through aseries of optical elements (retarders andjor rotators). Although the Poincare-sphere presentation of any polarization profile con stitutes a powerful and elegant method, it exhibits the difficulty of requiring manipulations in three-dimensional space, on the surface of the unit sphere. However, other graphical methods have been developed to bypass this difficulty Physics Physics, general Spannungsoptik (DE-588)4056002-8 gnd rswk-swf Matrizentheorie (DE-588)4128970-5 gnd rswk-swf Photoelastizität (DE-588)4045883-0 gnd rswk-swf Photoelastizität (DE-588)4045883-0 s Matrizentheorie (DE-588)4128970-5 s 1\p DE-604 Spannungsoptik (DE-588)4056002-8 s 2\p DE-604 Gdoutos, Emmanuel E. Sonstige oth https://doi.org/10.1007/978-3-540-35789-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Theocaris, Pericles S. Matrix Theory of Photoelasticity Physics Physics, general Spannungsoptik (DE-588)4056002-8 gnd Matrizentheorie (DE-588)4128970-5 gnd Photoelastizität (DE-588)4045883-0 gnd |
subject_GND | (DE-588)4056002-8 (DE-588)4128970-5 (DE-588)4045883-0 |
title | Matrix Theory of Photoelasticity |
title_auth | Matrix Theory of Photoelasticity |
title_exact_search | Matrix Theory of Photoelasticity |
title_full | Matrix Theory of Photoelasticity by Pericles S. Theocaris, Emmanuel E. Gdoutos |
title_fullStr | Matrix Theory of Photoelasticity by Pericles S. Theocaris, Emmanuel E. Gdoutos |
title_full_unstemmed | Matrix Theory of Photoelasticity by Pericles S. Theocaris, Emmanuel E. Gdoutos |
title_short | Matrix Theory of Photoelasticity |
title_sort | matrix theory of photoelasticity |
topic | Physics Physics, general Spannungsoptik (DE-588)4056002-8 gnd Matrizentheorie (DE-588)4128970-5 gnd Photoelastizität (DE-588)4045883-0 gnd |
topic_facet | Physics Physics, general Spannungsoptik Matrizentheorie Photoelastizität |
url | https://doi.org/10.1007/978-3-540-35789-6 |
work_keys_str_mv | AT theocarispericless matrixtheoryofphotoelasticity AT gdoutosemmanuele matrixtheoryofphotoelasticity |