Deterministic Chaos in General Relativity:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
1994
|
Schriftenreihe: | NATO ASI Series, Series B: Physics
332 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent |
Beschreibung: | 1 Online-Ressource (XII, 472 p) |
ISBN: | 9781475799934 9781475799958 |
ISSN: | 0258-1221 |
DOI: | 10.1007/978-1-4757-9993-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042412463 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781475799934 |c Online |9 978-1-4757-9993-4 | ||
020 | |a 9781475799958 |c Print |9 978-1-4757-9995-8 | ||
024 | 7 | |a 10.1007/978-1-4757-9993-4 |2 doi | |
035 | |a (OCoLC)860142896 | ||
035 | |a (DE-599)BVBBV042412463 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Hobill, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a Deterministic Chaos in General Relativity |c edited by David Hobill, Adrian Burd, Alan Coley |
246 | 1 | 3 | |a Proceedings of a NATO ARW held in Kananaskis, Alberta, Canada, July 25-30, 1993 |
264 | 1 | |a Boston, MA |b Springer US |c 1994 | |
300 | |a 1 Online-Ressource (XII, 472 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a NATO ASI Series, Series B: Physics |v 332 |x 0258-1221 | |
500 | |a Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1993 |z Kananaskis |2 gnd-content | |
689 | 0 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | 1 | |a Nichtlineares Phänomen |0 (DE-588)4136065-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 1 | 1 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
700 | 1 | |a Burd, Adrian |e Sonstige |4 oth | |
700 | 1 | |a Coley, Alan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-9993-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027847956 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153075267534848 |
---|---|
any_adam_object | |
author | Hobill, David |
author_facet | Hobill, David |
author_role | aut |
author_sort | Hobill, David |
author_variant | d h dh |
building | Verbundindex |
bvnumber | BV042412463 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)860142896 (DE-599)BVBBV042412463 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4757-9993-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03570nmm a2200577zcb4500</leader><controlfield tag="001">BV042412463</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475799934</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-9993-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475799958</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-9995-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-9993-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860142896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042412463</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hobill, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Deterministic Chaos in General Relativity</subfield><subfield code="c">edited by David Hobill, Adrian Burd, Alan Coley</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Proceedings of a NATO ARW held in Kananaskis, Alberta, Canada, July 25-30, 1993</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">NATO ASI Series, Series B: Physics</subfield><subfield code="v">332</subfield><subfield code="x">0258-1221</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1993</subfield><subfield code="z">Kananaskis</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares Phänomen</subfield><subfield code="0">(DE-588)4136065-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Burd, Adrian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coley, Alan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-9993-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027847956</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1993 Kananaskis gnd-content |
genre_facet | Konferenzschrift 1993 Kananaskis |
id | DE-604.BV042412463 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:50Z |
institution | BVB |
isbn | 9781475799934 9781475799958 |
issn | 0258-1221 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027847956 |
oclc_num | 860142896 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 472 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer US |
record_format | marc |
series2 | NATO ASI Series, Series B: Physics |
spelling | Hobill, David Verfasser aut Deterministic Chaos in General Relativity edited by David Hobill, Adrian Burd, Alan Coley Proceedings of a NATO ARW held in Kananaskis, Alberta, Canada, July 25-30, 1993 Boston, MA Springer US 1994 1 Online-Ressource (XII, 472 p) txt rdacontent c rdamedia cr rdacarrier NATO ASI Series, Series B: Physics 332 0258-1221 Nonlinear dynamical systems play an important role in a number of disciplines. The physical, biological, economic and even sociological worlds are comprised of com plex nonlinear systems that cannot be broken down into the behavior of their con stituents and then reassembled to form the whole. The lack of a superposition principle in such systems has challenged researchers to use a variety of analytic and numerical methods in attempts to understand the interesting nonlinear interactions that occur in the World around us. General relativity is a nonlinear dynamical theory par excellence. Only recently has the nonlinear evolution of the gravitational field described by the theory been tackled through the use of methods used in other disciplines to study the importance of time dependent nonlinearities. The complexity of the equations of general relativity has been (and still remains) a major hurdle in the formulation of concrete mathematical concepts. In the past the imposition of a high degree of symmetry has allowed the construction of exact solutions to the Einstein equations. However, most of those solutions are nonphysical and of those that do have a physical significance, many are often highly idealized or time independent Physics Theoretical, Mathematical and Computational Physics Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Nichtlineares Phänomen (DE-588)4136065-5 gnd rswk-swf Chaostheorie (DE-588)4009754-7 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1993 Kananaskis gnd-content Allgemeine Relativitätstheorie (DE-588)4112491-1 s Nichtlineares Phänomen (DE-588)4136065-5 s 2\p DE-604 Chaostheorie (DE-588)4009754-7 s 3\p DE-604 Burd, Adrian Sonstige oth Coley, Alan Sonstige oth https://doi.org/10.1007/978-1-4757-9993-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hobill, David Deterministic Chaos in General Relativity Physics Theoretical, Mathematical and Computational Physics Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Nichtlineares Phänomen (DE-588)4136065-5 gnd Chaostheorie (DE-588)4009754-7 gnd |
subject_GND | (DE-588)4112491-1 (DE-588)4136065-5 (DE-588)4009754-7 (DE-588)1071861417 |
title | Deterministic Chaos in General Relativity |
title_alt | Proceedings of a NATO ARW held in Kananaskis, Alberta, Canada, July 25-30, 1993 |
title_auth | Deterministic Chaos in General Relativity |
title_exact_search | Deterministic Chaos in General Relativity |
title_full | Deterministic Chaos in General Relativity edited by David Hobill, Adrian Burd, Alan Coley |
title_fullStr | Deterministic Chaos in General Relativity edited by David Hobill, Adrian Burd, Alan Coley |
title_full_unstemmed | Deterministic Chaos in General Relativity edited by David Hobill, Adrian Burd, Alan Coley |
title_short | Deterministic Chaos in General Relativity |
title_sort | deterministic chaos in general relativity |
topic | Physics Theoretical, Mathematical and Computational Physics Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd Nichtlineares Phänomen (DE-588)4136065-5 gnd Chaostheorie (DE-588)4009754-7 gnd |
topic_facet | Physics Theoretical, Mathematical and Computational Physics Allgemeine Relativitätstheorie Nichtlineares Phänomen Chaostheorie Konferenzschrift 1993 Kananaskis |
url | https://doi.org/10.1007/978-1-4757-9993-4 |
work_keys_str_mv | AT hobilldavid deterministicchaosingeneralrelativity AT burdadrian deterministicchaosingeneralrelativity AT coleyalan deterministicchaosingeneralrelativity AT hobilldavid proceedingsofanatoarwheldinkananaskisalbertacanadajuly25301993 AT burdadrian proceedingsofanatoarwheldinkananaskisalbertacanadajuly25301993 AT coleyalan proceedingsofanatoarwheldinkananaskisalbertacanadajuly25301993 |