The Shaggy Steed of Physics: Mathematical Beauty in the Physical World
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Shaggy Steed is an unassuming figure from Irish folklore who reveals himself as an inspiring teacher of the forces hidden in the universe. This book celebrates an unassuming bit of physics that also turns out to be an inspiring teacher. The two-body problem-the motion of two bodies bound by the inverse-square force of gravity and electricity-is the Shaggy Steed of Physics, guiding the reader to an understanding of both the forces and the mathematical beauty hidden in the physical world. The book begins with an exposition of the action principle and its revelation of invariants created by the symmetries of nature. It then turns to the two-body problem and the grand unifying themes of symmetry and topology in physics, both classical and quantum. On the scale of the solar system this motion generates the Kepler ellipse-the fundamental orbit of celestial mechanics. On the microscopic scale of the quantum the same motion generates the hydrogen atom-the primal element. This remarkable unity of the heavens and the elements rests upon hidden symmetry-the symmetry of rotation in four dimensions and the three-sphere upon which they are topologically imaged. This richly endowed symmetry is a paradigm for the unitary symmetries of the elementary particles and pointed the way to them. This new edition preserves the spirit of the original while deepening key topics. The remarkable relations between the generators of symmetry (such as rotation generators) and the dynamical invariants of the symmetry (such as the hidden invariant of Kepler motion) are now elaborated. Readers are led through the states of the hydrogen atom by a master quantum number orchestrating the symmetries of the three-sphere. And KAM Theory-the greatest achievement in celestial mechanics of the twentieth century-is given its place in the story |
Beschreibung: | 1 Online-Ressource (XV, 298 p) |
ISBN: | 9781475743470 9781475743494 |
DOI: | 10.1007/978-1-4757-4347-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042412373 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781475743470 |c Online |9 978-1-4757-4347-0 | ||
020 | |a 9781475743494 |c Print |9 978-1-4757-4349-4 | ||
024 | 7 | |a 10.1007/978-1-4757-4347-0 |2 doi | |
035 | |a (OCoLC)863906889 | ||
035 | |a (DE-599)BVBBV042412373 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Oliver, David |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Shaggy Steed of Physics |b Mathematical Beauty in the Physical World |c by David Oliver |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (XV, 298 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The Shaggy Steed is an unassuming figure from Irish folklore who reveals himself as an inspiring teacher of the forces hidden in the universe. This book celebrates an unassuming bit of physics that also turns out to be an inspiring teacher. The two-body problem-the motion of two bodies bound by the inverse-square force of gravity and electricity-is the Shaggy Steed of Physics, guiding the reader to an understanding of both the forces and the mathematical beauty hidden in the physical world. The book begins with an exposition of the action principle and its revelation of invariants created by the symmetries of nature. It then turns to the two-body problem and the grand unifying themes of symmetry and topology in physics, both classical and quantum. On the scale of the solar system this motion generates the Kepler ellipse-the fundamental orbit of celestial mechanics. On the microscopic scale of the quantum the same motion generates the hydrogen atom-the primal element. This remarkable unity of the heavens and the elements rests upon hidden symmetry-the symmetry of rotation in four dimensions and the three-sphere upon which they are topologically imaged. This richly endowed symmetry is a paradigm for the unitary symmetries of the elementary particles and pointed the way to them. This new edition preserves the spirit of the original while deepening key topics. The remarkable relations between the generators of symmetry (such as rotation generators) and the dynamical invariants of the symmetry (such as the hidden invariant of Kepler motion) are now elaborated. Readers are led through the states of the hydrogen atom by a master quantum number orchestrating the symmetries of the three-sphere. And KAM Theory-the greatest achievement in celestial mechanics of the twentieth century-is given its place in the story | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Bewegung |0 (DE-588)4006311-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zweikörperproblem |0 (DE-588)4191237-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ästhetik |0 (DE-588)4000626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | 1 | |a Bewegung |0 (DE-588)4006311-2 |D s |
689 | 0 | 2 | |a Ästhetik |0 (DE-588)4000626-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Zweikörperproblem |0 (DE-588)4191237-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4757-4347-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027847866 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153075034750976 |
---|---|
any_adam_object | |
author | Oliver, David |
author_facet | Oliver, David |
author_role | aut |
author_sort | Oliver, David |
author_variant | d o do |
building | Verbundindex |
bvnumber | BV042412373 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863906889 (DE-599)BVBBV042412373 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4757-4347-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04039nmm a2200601zc 4500</leader><controlfield tag="001">BV042412373</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475743470</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4757-4347-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781475743494</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4757-4349-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4757-4347-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863906889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042412373</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Oliver, David</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Shaggy Steed of Physics</subfield><subfield code="b">Mathematical Beauty in the Physical World</subfield><subfield code="c">by David Oliver</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 298 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Shaggy Steed is an unassuming figure from Irish folklore who reveals himself as an inspiring teacher of the forces hidden in the universe. This book celebrates an unassuming bit of physics that also turns out to be an inspiring teacher. The two-body problem-the motion of two bodies bound by the inverse-square force of gravity and electricity-is the Shaggy Steed of Physics, guiding the reader to an understanding of both the forces and the mathematical beauty hidden in the physical world. The book begins with an exposition of the action principle and its revelation of invariants created by the symmetries of nature. It then turns to the two-body problem and the grand unifying themes of symmetry and topology in physics, both classical and quantum. On the scale of the solar system this motion generates the Kepler ellipse-the fundamental orbit of celestial mechanics. On the microscopic scale of the quantum the same motion generates the hydrogen atom-the primal element. This remarkable unity of the heavens and the elements rests upon hidden symmetry-the symmetry of rotation in four dimensions and the three-sphere upon which they are topologically imaged. This richly endowed symmetry is a paradigm for the unitary symmetries of the elementary particles and pointed the way to them. This new edition preserves the spirit of the original while deepening key topics. The remarkable relations between the generators of symmetry (such as rotation generators) and the dynamical invariants of the symmetry (such as the hidden invariant of Kepler motion) are now elaborated. Readers are led through the states of the hydrogen atom by a master quantum number orchestrating the symmetries of the three-sphere. And KAM Theory-the greatest achievement in celestial mechanics of the twentieth century-is given its place in the story</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bewegung</subfield><subfield code="0">(DE-588)4006311-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zweikörperproblem</subfield><subfield code="0">(DE-588)4191237-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ästhetik</subfield><subfield code="0">(DE-588)4000626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bewegung</subfield><subfield code="0">(DE-588)4006311-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ästhetik</subfield><subfield code="0">(DE-588)4000626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Zweikörperproblem</subfield><subfield code="0">(DE-588)4191237-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4757-4347-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027847866</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042412373 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:50Z |
institution | BVB |
isbn | 9781475743470 9781475743494 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027847866 |
oclc_num | 863906889 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 298 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
spelling | Oliver, David Verfasser aut The Shaggy Steed of Physics Mathematical Beauty in the Physical World by David Oliver New York, NY Springer New York 1994 1 Online-Ressource (XV, 298 p) txt rdacontent c rdamedia cr rdacarrier The Shaggy Steed is an unassuming figure from Irish folklore who reveals himself as an inspiring teacher of the forces hidden in the universe. This book celebrates an unassuming bit of physics that also turns out to be an inspiring teacher. The two-body problem-the motion of two bodies bound by the inverse-square force of gravity and electricity-is the Shaggy Steed of Physics, guiding the reader to an understanding of both the forces and the mathematical beauty hidden in the physical world. The book begins with an exposition of the action principle and its revelation of invariants created by the symmetries of nature. It then turns to the two-body problem and the grand unifying themes of symmetry and topology in physics, both classical and quantum. On the scale of the solar system this motion generates the Kepler ellipse-the fundamental orbit of celestial mechanics. On the microscopic scale of the quantum the same motion generates the hydrogen atom-the primal element. This remarkable unity of the heavens and the elements rests upon hidden symmetry-the symmetry of rotation in four dimensions and the three-sphere upon which they are topologically imaged. This richly endowed symmetry is a paradigm for the unitary symmetries of the elementary particles and pointed the way to them. This new edition preserves the spirit of the original while deepening key topics. The remarkable relations between the generators of symmetry (such as rotation generators) and the dynamical invariants of the symmetry (such as the hidden invariant of Kepler motion) are now elaborated. Readers are led through the states of the hydrogen atom by a master quantum number orchestrating the symmetries of the three-sphere. And KAM Theory-the greatest achievement in celestial mechanics of the twentieth century-is given its place in the story Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Bewegung (DE-588)4006311-2 gnd rswk-swf Zweikörperproblem (DE-588)4191237-8 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Ästhetik (DE-588)4000626-8 gnd rswk-swf Physik (DE-588)4045956-1 s Bewegung (DE-588)4006311-2 s Ästhetik (DE-588)4000626-8 s 1\p DE-604 Mathematische Physik (DE-588)4037952-8 s 2\p DE-604 Zweikörperproblem (DE-588)4191237-8 s 3\p DE-604 https://doi.org/10.1007/978-1-4757-4347-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Oliver, David The Shaggy Steed of Physics Mathematical Beauty in the Physical World Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Bewegung (DE-588)4006311-2 gnd Zweikörperproblem (DE-588)4191237-8 gnd Physik (DE-588)4045956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Ästhetik (DE-588)4000626-8 gnd |
subject_GND | (DE-588)4006311-2 (DE-588)4191237-8 (DE-588)4045956-1 (DE-588)4037952-8 (DE-588)4000626-8 |
title | The Shaggy Steed of Physics Mathematical Beauty in the Physical World |
title_auth | The Shaggy Steed of Physics Mathematical Beauty in the Physical World |
title_exact_search | The Shaggy Steed of Physics Mathematical Beauty in the Physical World |
title_full | The Shaggy Steed of Physics Mathematical Beauty in the Physical World by David Oliver |
title_fullStr | The Shaggy Steed of Physics Mathematical Beauty in the Physical World by David Oliver |
title_full_unstemmed | The Shaggy Steed of Physics Mathematical Beauty in the Physical World by David Oliver |
title_short | The Shaggy Steed of Physics |
title_sort | the shaggy steed of physics mathematical beauty in the physical world |
title_sub | Mathematical Beauty in the Physical World |
topic | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Bewegung (DE-588)4006311-2 gnd Zweikörperproblem (DE-588)4191237-8 gnd Physik (DE-588)4045956-1 gnd Mathematische Physik (DE-588)4037952-8 gnd Ästhetik (DE-588)4000626-8 gnd |
topic_facet | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Bewegung Zweikörperproblem Physik Mathematische Physik Ästhetik |
url | https://doi.org/10.1007/978-1-4757-4347-0 |
work_keys_str_mv | AT oliverdavid theshaggysteedofphysicsmathematicalbeautyinthephysicalworld |