Spinors in Hilbert Space:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Dirac, P. A. M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Springer US 1974
Schlagworte:
Online-Zugang:Volltext
Beschreibung:1. Hilbert Space The words "Hilbert space" here will always denote what mathematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable infinity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one
Beschreibung:1 Online-Ressource (VII, 91 p)
ISBN:9781475700343
9781475700367
DOI:10.1007/978-1-4757-0034-3

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen