Geometry of Quantum Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1968
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present work is the first volume of a substantially enlarged version of the mimeographed notes of a course of lectures first given by me in the Indian Statistical Institute, Calcutta, India, during 1964-65. When it was suggested that these lectures be developed into a book, I readily agreed and took the opportunity to extend the scope of the material covered. No background in physics is in principle necessary for understand ing the essential ideas in this work. However, a high degree of mathematical maturity is certainly indispensable. It is safe to say that I aim at an audience composed of professional mathematicians, advanced graduate students, and, hopefully, the rapidly increasing group of mathematical physicists who are attracted to fundamental mathematical questions. Over the years, the mathematics of quantum theory has become more abstract and, consequently, simpler. Hilbert spaces have been used from the very beginning and, after Weyl and Wigner, group representations have come in conclusively. Recent discoveries seem to indicate that the role of group representations is destined for further expansion, not to speak of the impact of the theory of several complex variables and function-space analysis. But all of this pertains to the world of interacting subatomic particles; the more modest view of the microscopic world presented in this book requires somewhat less. The reader with a knowledge of abstract integration, Hilbert space theory, and topological groups will find the going easy |
Beschreibung: | 1 Online-Ressource (XIV, 193 p) |
ISBN: | 9781461577065 9781461577089 |
DOI: | 10.1007/978-1-4615-7706-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411726 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1968 |||| o||u| ||||||eng d | ||
020 | |a 9781461577065 |c Online |9 978-1-4615-7706-5 | ||
020 | |a 9781461577089 |c Print |9 978-1-4615-7708-9 | ||
024 | 7 | |a 10.1007/978-1-4615-7706-5 |2 doi | |
035 | |a (OCoLC)906697421 | ||
035 | |a (DE-599)BVBBV042411726 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Varadarajan, V. S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Quantum Theory |c by V. S. Varadarajan |
264 | 1 | |a New York, NY |b Springer New York |c 1968 | |
300 | |a 1 Online-Ressource (XIV, 193 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The present work is the first volume of a substantially enlarged version of the mimeographed notes of a course of lectures first given by me in the Indian Statistical Institute, Calcutta, India, during 1964-65. When it was suggested that these lectures be developed into a book, I readily agreed and took the opportunity to extend the scope of the material covered. No background in physics is in principle necessary for understand ing the essential ideas in this work. However, a high degree of mathematical maturity is certainly indispensable. It is safe to say that I aim at an audience composed of professional mathematicians, advanced graduate students, and, hopefully, the rapidly increasing group of mathematical physicists who are attracted to fundamental mathematical questions. Over the years, the mathematics of quantum theory has become more abstract and, consequently, simpler. Hilbert spaces have been used from the very beginning and, after Weyl and Wigner, group representations have come in conclusively. Recent discoveries seem to indicate that the role of group representations is destined for further expansion, not to speak of the impact of the theory of several complex variables and function-space analysis. But all of this pertains to the world of interacting subatomic particles; the more modest view of the microscopic world presented in this book requires somewhat less. The reader with a knowledge of abstract integration, Hilbert space theory, and topological groups will find the going easy | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematical Physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 1 | 1 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-7706-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027847219 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153073532141568 |
---|---|
any_adam_object | |
author | Varadarajan, V. S. |
author_facet | Varadarajan, V. S. |
author_role | aut |
author_sort | Varadarajan, V. S. |
author_variant | v s v vs vsv |
building | Verbundindex |
bvnumber | BV042411726 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)906697421 (DE-599)BVBBV042411726 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4615-7706-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03580nmm a2200589zc 4500</leader><controlfield tag="001">BV042411726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1968 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461577065</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-7706-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461577089</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4615-7708-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-7706-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906697421</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varadarajan, V. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Quantum Theory</subfield><subfield code="c">by V. S. Varadarajan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 193 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present work is the first volume of a substantially enlarged version of the mimeographed notes of a course of lectures first given by me in the Indian Statistical Institute, Calcutta, India, during 1964-65. When it was suggested that these lectures be developed into a book, I readily agreed and took the opportunity to extend the scope of the material covered. No background in physics is in principle necessary for understand ing the essential ideas in this work. However, a high degree of mathematical maturity is certainly indispensable. It is safe to say that I aim at an audience composed of professional mathematicians, advanced graduate students, and, hopefully, the rapidly increasing group of mathematical physicists who are attracted to fundamental mathematical questions. Over the years, the mathematics of quantum theory has become more abstract and, consequently, simpler. Hilbert spaces have been used from the very beginning and, after Weyl and Wigner, group representations have come in conclusively. Recent discoveries seem to indicate that the role of group representations is destined for further expansion, not to speak of the impact of the theory of several complex variables and function-space analysis. But all of this pertains to the world of interacting subatomic particles; the more modest view of the microscopic world presented in this book requires somewhat less. The reader with a knowledge of abstract integration, Hilbert space theory, and topological groups will find the going easy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-7706-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027847219</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411726 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:49Z |
institution | BVB |
isbn | 9781461577065 9781461577089 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027847219 |
oclc_num | 906697421 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIV, 193 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Springer New York |
record_format | marc |
spelling | Varadarajan, V. S. Verfasser aut Geometry of Quantum Theory by V. S. Varadarajan New York, NY Springer New York 1968 1 Online-Ressource (XIV, 193 p) txt rdacontent c rdamedia cr rdacarrier The present work is the first volume of a substantially enlarged version of the mimeographed notes of a course of lectures first given by me in the Indian Statistical Institute, Calcutta, India, during 1964-65. When it was suggested that these lectures be developed into a book, I readily agreed and took the opportunity to extend the scope of the material covered. No background in physics is in principle necessary for understand ing the essential ideas in this work. However, a high degree of mathematical maturity is certainly indispensable. It is safe to say that I aim at an audience composed of professional mathematicians, advanced graduate students, and, hopefully, the rapidly increasing group of mathematical physicists who are attracted to fundamental mathematical questions. Over the years, the mathematics of quantum theory has become more abstract and, consequently, simpler. Hilbert spaces have been used from the very beginning and, after Weyl and Wigner, group representations have come in conclusively. Recent discoveries seem to indicate that the role of group representations is destined for further expansion, not to speak of the impact of the theory of several complex variables and function-space analysis. But all of this pertains to the world of interacting subatomic particles; the more modest view of the microscopic world presented in this book requires somewhat less. The reader with a knowledge of abstract integration, Hilbert space theory, and topological groups will find the going easy Physics Quantum theory Mathematical physics Quantum Physics Theoretical, Mathematical and Computational Physics Mathematical Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantentheorie (DE-588)4047992-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Quantentheorie (DE-588)4047992-4 s Geometrie (DE-588)4020236-7 s 1\p DE-604 Projektive Geometrie (DE-588)4047436-7 s 2\p DE-604 https://doi.org/10.1007/978-1-4615-7706-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Varadarajan, V. S. Geometry of Quantum Theory Physics Quantum theory Mathematical physics Quantum Physics Theoretical, Mathematical and Computational Physics Mathematical Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantentheorie (DE-588)4047992-4 gnd Geometrie (DE-588)4020236-7 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
subject_GND | (DE-588)4047992-4 (DE-588)4020236-7 (DE-588)4047436-7 |
title | Geometry of Quantum Theory |
title_auth | Geometry of Quantum Theory |
title_exact_search | Geometry of Quantum Theory |
title_full | Geometry of Quantum Theory by V. S. Varadarajan |
title_fullStr | Geometry of Quantum Theory by V. S. Varadarajan |
title_full_unstemmed | Geometry of Quantum Theory by V. S. Varadarajan |
title_short | Geometry of Quantum Theory |
title_sort | geometry of quantum theory |
topic | Physics Quantum theory Mathematical physics Quantum Physics Theoretical, Mathematical and Computational Physics Mathematical Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Quantentheorie (DE-588)4047992-4 gnd Geometrie (DE-588)4020236-7 gnd Projektive Geometrie (DE-588)4047436-7 gnd |
topic_facet | Physics Quantum theory Mathematical physics Quantum Physics Theoretical, Mathematical and Computational Physics Mathematical Physics Mathematical Methods in Physics Mathematische Physik Quantentheorie Geometrie Projektive Geometrie |
url | https://doi.org/10.1007/978-1-4615-7706-5 |
work_keys_str_mv | AT varadarajanvs geometryofquantumtheory |