Geometric Method for Stability of Non-Linear Elastic Thin Shells:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2002
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice |
Beschreibung: | 1 Online-Ressource (XIII, 244 p) |
ISBN: | 9781461515111 9780792375241 |
DOI: | 10.1007/978-1-4615-1511-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411538 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781461515111 |c Online |9 978-1-4615-1511-1 | ||
020 | |a 9780792375241 |c Print |9 978-0-7923-7524-1 | ||
024 | 7 | |a 10.1007/978-1-4615-1511-1 |2 doi | |
035 | |a (OCoLC)905444067 | ||
035 | |a (DE-599)BVBBV042411538 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Ivanova, Jordanka |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometric Method for Stability of Non-Linear Elastic Thin Shells |c by Jordanka Ivanova, Franco Pastrone |
264 | 1 | |a Boston, MA |b Springer US |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 244 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Mechanical engineering | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Structural Mechanics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elastische Schale |0 (DE-588)4151689-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dünne Schale |0 (DE-588)4150826-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stabilität |0 (DE-588)4056693-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastische Schale |0 (DE-588)4151689-8 |D s |
689 | 0 | 1 | |a Dünne Schale |0 (DE-588)4150826-9 |D s |
689 | 0 | 2 | |a Stabilität |0 (DE-588)4056693-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Pastrone, Franco |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4615-1511-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027847031 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153073079156736 |
---|---|
any_adam_object | |
author | Ivanova, Jordanka |
author_facet | Ivanova, Jordanka |
author_role | aut |
author_sort | Ivanova, Jordanka |
author_variant | j i ji |
building | Verbundindex |
bvnumber | BV042411538 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905444067 (DE-599)BVBBV042411538 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4615-1511-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03300nmm a2200541zc 4500</leader><controlfield tag="001">BV042411538</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461515111</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4615-1511-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780792375241</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-7923-7524-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4615-1511-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905444067</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411538</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivanova, Jordanka</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric Method for Stability of Non-Linear Elastic Thin Shells</subfield><subfield code="c">by Jordanka Ivanova, Franco Pastrone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 244 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastische Schale</subfield><subfield code="0">(DE-588)4151689-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dünne Schale</subfield><subfield code="0">(DE-588)4150826-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastische Schale</subfield><subfield code="0">(DE-588)4151689-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dünne Schale</subfield><subfield code="0">(DE-588)4150826-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stabilität</subfield><subfield code="0">(DE-588)4056693-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pastrone, Franco</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4615-1511-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027847031</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411538 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:48Z |
institution | BVB |
isbn | 9781461515111 9780792375241 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027847031 |
oclc_num | 905444067 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 244 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer US |
record_format | marc |
spelling | Ivanova, Jordanka Verfasser aut Geometric Method for Stability of Non-Linear Elastic Thin Shells by Jordanka Ivanova, Franco Pastrone Boston, MA Springer US 2002 1 Online-Ressource (XIII, 244 p) txt rdacontent c rdamedia cr rdacarrier PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surface, successfully applied to a direct variational approach to the nonlinear shell stability problems. Until now most Pogorelov's monographs were written in Russian, which limited the diffusion of his ideas among the international scientific community. The present book is intended to assist and encourage the researches in this field to apply the geometric method and the related results to everyday engineering practice Physics Mathematics Mechanics Mechanical engineering Applications of Mathematics Structural Mechanics Mathematik Elastische Schale (DE-588)4151689-8 gnd rswk-swf Dünne Schale (DE-588)4150826-9 gnd rswk-swf Stabilität (DE-588)4056693-6 gnd rswk-swf Elastische Schale (DE-588)4151689-8 s Dünne Schale (DE-588)4150826-9 s Stabilität (DE-588)4056693-6 s 1\p DE-604 Pastrone, Franco Sonstige oth https://doi.org/10.1007/978-1-4615-1511-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ivanova, Jordanka Geometric Method for Stability of Non-Linear Elastic Thin Shells Physics Mathematics Mechanics Mechanical engineering Applications of Mathematics Structural Mechanics Mathematik Elastische Schale (DE-588)4151689-8 gnd Dünne Schale (DE-588)4150826-9 gnd Stabilität (DE-588)4056693-6 gnd |
subject_GND | (DE-588)4151689-8 (DE-588)4150826-9 (DE-588)4056693-6 |
title | Geometric Method for Stability of Non-Linear Elastic Thin Shells |
title_auth | Geometric Method for Stability of Non-Linear Elastic Thin Shells |
title_exact_search | Geometric Method for Stability of Non-Linear Elastic Thin Shells |
title_full | Geometric Method for Stability of Non-Linear Elastic Thin Shells by Jordanka Ivanova, Franco Pastrone |
title_fullStr | Geometric Method for Stability of Non-Linear Elastic Thin Shells by Jordanka Ivanova, Franco Pastrone |
title_full_unstemmed | Geometric Method for Stability of Non-Linear Elastic Thin Shells by Jordanka Ivanova, Franco Pastrone |
title_short | Geometric Method for Stability of Non-Linear Elastic Thin Shells |
title_sort | geometric method for stability of non linear elastic thin shells |
topic | Physics Mathematics Mechanics Mechanical engineering Applications of Mathematics Structural Mechanics Mathematik Elastische Schale (DE-588)4151689-8 gnd Dünne Schale (DE-588)4150826-9 gnd Stabilität (DE-588)4056693-6 gnd |
topic_facet | Physics Mathematics Mechanics Mechanical engineering Applications of Mathematics Structural Mechanics Mathematik Elastische Schale Dünne Schale Stabilität |
url | https://doi.org/10.1007/978-1-4615-1511-1 |
work_keys_str_mv | AT ivanovajordanka geometricmethodforstabilityofnonlinearelasticthinshells AT pastronefranco geometricmethodforstabilityofnonlinearelasticthinshells |