Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1982
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Iterative methods for calculating static fields are presented in this book. Static field boundary value problems are reduced to the boundary integral equations and these equations are solved by means of iterative processes. This is done for interior and exterior problems and for var ious boundary conditions. Most problems treated are three-dimensional, because for two-dimensional problems the specific and often powerful tool of conformal mapping is available. The iterative methods have some ad vantages over grid methods and, to a certain extent, variational methods: (1) they give analytic approximate formulas for the field and for some functionals of the field of practical importance (such as capacitance and polarizability tensor), (2) the formulas for the functionals can be used in a computer program for calculating these functionals for bodies of arbitrary shape, (3) iterative methods are convenient for computers. From a practical point of view the above methods reduce to the cal culation of multiple integrals. Of special interest is the case of inte grands with weak singularities. Some of the central results of the book are some analytic approximate formulas for scattering matrices for small bodies of arbitrary shape. These formulas answer many practical questions such as how does the scattering depend on the shape of the body or on the boundary conditions, how does one calculate the effective field in a medium consisting of many small particles, and many other questions |
Beschreibung: | 1 Online-Ressource (XII, 123 p) |
ISBN: | 9781461257158 9780387906829 |
DOI: | 10.1007/978-1-4612-5715-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411181 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1982 |||| o||u| ||||||eng d | ||
020 | |a 9781461257158 |c Online |9 978-1-4612-5715-8 | ||
020 | |a 9780387906829 |c Print |9 978-0-387-90682-9 | ||
024 | 7 | |a 10.1007/978-1-4612-5715-8 |2 doi | |
035 | |a (OCoLC)863793064 | ||
035 | |a (DE-599)BVBBV042411181 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Ramm, Alexander G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies |c by Alexander G. Ramm |
264 | 1 | |a New York, NY |b Springer New York |c 1982 | |
300 | |a 1 Online-Ressource (XII, 123 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Iterative methods for calculating static fields are presented in this book. Static field boundary value problems are reduced to the boundary integral equations and these equations are solved by means of iterative processes. This is done for interior and exterior problems and for var ious boundary conditions. Most problems treated are three-dimensional, because for two-dimensional problems the specific and often powerful tool of conformal mapping is available. The iterative methods have some ad vantages over grid methods and, to a certain extent, variational methods: (1) they give analytic approximate formulas for the field and for some functionals of the field of practical importance (such as capacitance and polarizability tensor), (2) the formulas for the functionals can be used in a computer program for calculating these functionals for bodies of arbitrary shape, (3) iterative methods are convenient for computers. From a practical point of view the above methods reduce to the cal culation of multiple integrals. Of special interest is the case of inte grands with weak singularities. Some of the central results of the book are some analytic approximate formulas for scattering matrices for small bodies of arbitrary shape. These formulas answer many practical questions such as how does the scattering depend on the shape of the body or on the boundary conditions, how does one calculate the effective field in a medium consisting of many small particles, and many other questions | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Elektrostatisches Feld |0 (DE-588)4151980-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Berechnung |0 (DE-588)4120997-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetische Streuung |0 (DE-588)4194512-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektrostatisches Feld |0 (DE-588)4151980-2 |D s |
689 | 0 | 1 | |a Berechnung |0 (DE-588)4120997-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elektromagnetische Streuung |0 (DE-588)4194512-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5715-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846674 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072214081536 |
---|---|
any_adam_object | |
author | Ramm, Alexander G. |
author_facet | Ramm, Alexander G. |
author_role | aut |
author_sort | Ramm, Alexander G. |
author_variant | a g r ag agr |
building | Verbundindex |
bvnumber | BV042411181 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863793064 (DE-599)BVBBV042411181 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-5715-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03433nmm a2200529zc 4500</leader><controlfield tag="001">BV042411181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1982 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461257158</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5715-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387906829</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-90682-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5715-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863793064</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ramm, Alexander G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies</subfield><subfield code="c">by Alexander G. Ramm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1982</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 123 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Iterative methods for calculating static fields are presented in this book. Static field boundary value problems are reduced to the boundary integral equations and these equations are solved by means of iterative processes. This is done for interior and exterior problems and for var ious boundary conditions. Most problems treated are three-dimensional, because for two-dimensional problems the specific and often powerful tool of conformal mapping is available. The iterative methods have some ad vantages over grid methods and, to a certain extent, variational methods: (1) they give analytic approximate formulas for the field and for some functionals of the field of practical importance (such as capacitance and polarizability tensor), (2) the formulas for the functionals can be used in a computer program for calculating these functionals for bodies of arbitrary shape, (3) iterative methods are convenient for computers. From a practical point of view the above methods reduce to the cal culation of multiple integrals. Of special interest is the case of inte grands with weak singularities. Some of the central results of the book are some analytic approximate formulas for scattering matrices for small bodies of arbitrary shape. These formulas answer many practical questions such as how does the scattering depend on the shape of the body or on the boundary conditions, how does one calculate the effective field in a medium consisting of many small particles, and many other questions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrostatisches Feld</subfield><subfield code="0">(DE-588)4151980-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetische Streuung</subfield><subfield code="0">(DE-588)4194512-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektrostatisches Feld</subfield><subfield code="0">(DE-588)4151980-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Berechnung</subfield><subfield code="0">(DE-588)4120997-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elektromagnetische Streuung</subfield><subfield code="0">(DE-588)4194512-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5715-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846674</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411181 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461257158 9780387906829 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846674 |
oclc_num | 863793064 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XII, 123 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1982 |
publishDateSearch | 1982 |
publishDateSort | 1982 |
publisher | Springer New York |
record_format | marc |
spelling | Ramm, Alexander G. Verfasser aut Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies by Alexander G. Ramm New York, NY Springer New York 1982 1 Online-Ressource (XII, 123 p) txt rdacontent c rdamedia cr rdacarrier Iterative methods for calculating static fields are presented in this book. Static field boundary value problems are reduced to the boundary integral equations and these equations are solved by means of iterative processes. This is done for interior and exterior problems and for var ious boundary conditions. Most problems treated are three-dimensional, because for two-dimensional problems the specific and often powerful tool of conformal mapping is available. The iterative methods have some ad vantages over grid methods and, to a certain extent, variational methods: (1) they give analytic approximate formulas for the field and for some functionals of the field of practical importance (such as capacitance and polarizability tensor), (2) the formulas for the functionals can be used in a computer program for calculating these functionals for bodies of arbitrary shape, (3) iterative methods are convenient for computers. From a practical point of view the above methods reduce to the cal culation of multiple integrals. Of special interest is the case of inte grands with weak singularities. Some of the central results of the book are some analytic approximate formulas for scattering matrices for small bodies of arbitrary shape. These formulas answer many practical questions such as how does the scattering depend on the shape of the body or on the boundary conditions, how does one calculate the effective field in a medium consisting of many small particles, and many other questions Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Elektrostatisches Feld (DE-588)4151980-2 gnd rswk-swf Berechnung (DE-588)4120997-7 gnd rswk-swf Elektromagnetische Streuung (DE-588)4194512-8 gnd rswk-swf Elektrostatisches Feld (DE-588)4151980-2 s Berechnung (DE-588)4120997-7 s 1\p DE-604 Elektromagnetische Streuung (DE-588)4194512-8 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-5715-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ramm, Alexander G. Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Elektrostatisches Feld (DE-588)4151980-2 gnd Berechnung (DE-588)4120997-7 gnd Elektromagnetische Streuung (DE-588)4194512-8 gnd |
subject_GND | (DE-588)4151980-2 (DE-588)4120997-7 (DE-588)4194512-8 |
title | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies |
title_auth | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies |
title_exact_search | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies |
title_full | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies by Alexander G. Ramm |
title_fullStr | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies by Alexander G. Ramm |
title_full_unstemmed | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies by Alexander G. Ramm |
title_short | Iterative Methods for Calculating Static Fields and Wave Scattering by Small Bodies |
title_sort | iterative methods for calculating static fields and wave scattering by small bodies |
topic | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Elektrostatisches Feld (DE-588)4151980-2 gnd Berechnung (DE-588)4120997-7 gnd Elektromagnetische Streuung (DE-588)4194512-8 gnd |
topic_facet | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Elektrostatisches Feld Berechnung Elektromagnetische Streuung |
url | https://doi.org/10.1007/978-1-4612-5715-8 |
work_keys_str_mv | AT rammalexanderg iterativemethodsforcalculatingstaticfieldsandwavescatteringbysmallbodies |