Magnetohydrodynamic Equilibrium and Stability of Stellarators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1984
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . |
Beschreibung: | 1 Online-Ressource (X, 196p. 25 illus) |
ISBN: | 9781461252405 9781461297536 |
DOI: | 10.1007/978-1-4612-5240-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411177 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781461252405 |c Online |9 978-1-4612-5240-5 | ||
020 | |a 9781461297536 |c Print |9 978-1-4612-9753-6 | ||
024 | 7 | |a 10.1007/978-1-4612-5240-5 |2 doi | |
035 | |a (OCoLC)863766389 | ||
035 | |a (DE-599)BVBBV042411177 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 539 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Bauer, Frances |e Verfasser |4 aut | |
245 | 1 | 0 | |a Magnetohydrodynamic Equilibrium and Stability of Stellarators |c by Frances Bauer, Octavio Betancourt, Paul Garabedian |
264 | 1 | |a New York, NY |b Springer New York |c 1984 | |
300 | |a 1 Online-Ressource (X, 196p. 25 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Atomic, Molecular, Optical and Plasma Physics | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stellarator |0 (DE-588)4183081-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |D s |
689 | 0 | 1 | |a Stellarator |0 (DE-588)4183081-7 |D s |
689 | 0 | 2 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Betancourt, Octavio |e Sonstige |4 oth | |
700 | 1 | |a Garabedian, Paul |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5240-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846670 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072214081536 |
---|---|
any_adam_object | |
author | Bauer, Frances |
author_facet | Bauer, Frances |
author_role | aut |
author_sort | Bauer, Frances |
author_variant | f b fb |
building | Verbundindex |
bvnumber | BV042411177 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863766389 (DE-599)BVBBV042411177 |
dewey-full | 539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539 |
dewey-search | 539 |
dewey-sort | 3539 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-5240-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03806nmm a2200553zc 4500</leader><controlfield tag="001">BV042411177</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461252405</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5240-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461297536</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-9753-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5240-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863766389</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411177</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauer, Frances</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetohydrodynamic Equilibrium and Stability of Stellarators</subfield><subfield code="c">by Frances Bauer, Octavio Betancourt, Paul Garabedian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 196p. 25 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . .</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Atomic, Molecular, Optical and Plasma Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stellarator</subfield><subfield code="0">(DE-588)4183081-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stellarator</subfield><subfield code="0">(DE-588)4183081-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Betancourt, Octavio</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garabedian, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5240-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846670</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411177 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461252405 9781461297536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846670 |
oclc_num | 863766389 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 196p. 25 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer New York |
record_format | marc |
spelling | Bauer, Frances Verfasser aut Magnetohydrodynamic Equilibrium and Stability of Stellarators by Frances Bauer, Octavio Betancourt, Paul Garabedian New York, NY Springer New York 1984 1 Online-Ressource (X, 196p. 25 illus) txt rdacontent c rdamedia cr rdacarrier In this book, we describe in detail a numerical method to study the equilibrium and stability of a plasma confined by a strong magnetic field in toroidal geometry without two-dimensional symmetry. The principal appli cation is to stellarators, which are currently of interest in thermonuclear fusion research. Our mathematical model is based on the partial differential equations of ideal magnetohydrodynamics. The main contribution is a computer code named BETA that is listed in the final chapter. This work is the natural continuation of an investigation that was presented in an early volume of the Springer Series in Computational Physics (cf. [3]). It has been supported over a period of years by the U.S. Department of Energy under Contract DE-AC02-76ER03077 with New York University. We would like to express our gratitude to Dr. Franz Herrnegger for the assistance he has given us with the preparation of the manuscript. We are especially indebted to Connie Engle for the high quality of the final typescript. New York F. BAUER October 1983 O. BETANCOURT P. GARABEDIAN Contents 1. Introduction 1 2. Synopsis of the Method 3 1. Variational principle 3 2. Coordinate system 6 3. Finite Difference Scheme 8 1. Difference equations ....................... " 8 2. Island structure ............................. 10 3. Accelerated iteration procedure .............. . . .. 12 Nonlinear Stability 15 4. 1. Second minimization . . . . . . . . . . . . . . . . .. . . 15 . . . . . 2. Test functions and convergence studies . . . . . . . .. . . 17 . 3. Comparison with exact solutions ................. 19 5. The Mercier Criterion 22 1. Local mode analysis . . . . . . . . . . . . . . . . .. . . 22 . . . . . 2. Computational method . . . . . . . . . . . . . . . .. . . 23 . . . Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Fluid- and Aerodynamics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Magnetohydrodynamik (DE-588)4130803-7 gnd rswk-swf Stellarator (DE-588)4183081-7 gnd rswk-swf Magnetohydrodynamik (DE-588)4130803-7 s Stellarator (DE-588)4183081-7 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Betancourt, Octavio Sonstige oth Garabedian, Paul Sonstige oth https://doi.org/10.1007/978-1-4612-5240-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bauer, Frances Magnetohydrodynamic Equilibrium and Stability of Stellarators Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Fluid- and Aerodynamics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Mathematisches Modell (DE-588)4114528-8 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd Stellarator (DE-588)4183081-7 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4130803-7 (DE-588)4183081-7 |
title | Magnetohydrodynamic Equilibrium and Stability of Stellarators |
title_auth | Magnetohydrodynamic Equilibrium and Stability of Stellarators |
title_exact_search | Magnetohydrodynamic Equilibrium and Stability of Stellarators |
title_full | Magnetohydrodynamic Equilibrium and Stability of Stellarators by Frances Bauer, Octavio Betancourt, Paul Garabedian |
title_fullStr | Magnetohydrodynamic Equilibrium and Stability of Stellarators by Frances Bauer, Octavio Betancourt, Paul Garabedian |
title_full_unstemmed | Magnetohydrodynamic Equilibrium and Stability of Stellarators by Frances Bauer, Octavio Betancourt, Paul Garabedian |
title_short | Magnetohydrodynamic Equilibrium and Stability of Stellarators |
title_sort | magnetohydrodynamic equilibrium and stability of stellarators |
topic | Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Fluid- and Aerodynamics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Mathematisches Modell (DE-588)4114528-8 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd Stellarator (DE-588)4183081-7 gnd |
topic_facet | Physics Mathematical physics Atomic, Molecular, Optical and Plasma Physics Fluid- and Aerodynamics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Mathematisches Modell Magnetohydrodynamik Stellarator |
url | https://doi.org/10.1007/978-1-4612-5240-5 |
work_keys_str_mv | AT bauerfrances magnetohydrodynamicequilibriumandstabilityofstellarators AT betancourtoctavio magnetohydrodynamicequilibriumandstabilityofstellarators AT garabedianpaul magnetohydrodynamicequilibriumandstabilityofstellarators |