Quantum Field Theory and Statistical Mechanics: Expositions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1985
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields |
Beschreibung: | 1 Online-Ressource (VII, 418 p) |
ISBN: | 9781461251583 9780817632755 |
DOI: | 10.1007/978-1-4612-5158-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411174 | ||
003 | DE-604 | ||
005 | 20160720 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1985 |||| o||u| ||||||eng d | ||
020 | |a 9781461251583 |c Online |9 978-1-4612-5158-3 | ||
020 | |a 9780817632755 |c Print |9 978-0-8176-3275-5 | ||
024 | 7 | |a 10.1007/978-1-4612-5158-3 |2 doi | |
035 | |a (OCoLC)863786723 | ||
035 | |a (DE-599)BVBBV042411174 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Glimm, James |d 1934- |e Verfasser |0 (DE-588)140590005 |4 aut | |
245 | 1 | 0 | |a Quantum Field Theory and Statistical Mechanics |b Expositions |c by James Glimm, Arthur Jaffe |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1985 | |
300 | |a 1 Online-Ressource (VII, 418 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields | ||
650 | 4 | |a Physics | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Statistische Mechanik |0 (DE-588)4056999-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Statistische Mechanik |0 (DE-588)4056999-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Jaffe, Arthur |d 1937- |e Sonstige |0 (DE-588)1089192258 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-5158-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846667 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072203595776 |
---|---|
any_adam_object | |
author | Glimm, James 1934- |
author_GND | (DE-588)140590005 (DE-588)1089192258 |
author_facet | Glimm, James 1934- |
author_role | aut |
author_sort | Glimm, James 1934- |
author_variant | j g jg |
building | Verbundindex |
bvnumber | BV042411174 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863786723 (DE-599)BVBBV042411174 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-5158-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03132nmm a2200541zc 4500</leader><controlfield tag="001">BV042411174</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1985 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461251583</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-5158-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817632755</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-3275-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-5158-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863786723</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411174</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glimm, James</subfield><subfield code="d">1934-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)140590005</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Field Theory and Statistical Mechanics</subfield><subfield code="b">Expositions</subfield><subfield code="c">by James Glimm, Arthur Jaffe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1985</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 418 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistische Mechanik</subfield><subfield code="0">(DE-588)4056999-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jaffe, Arthur</subfield><subfield code="d">1937-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1089192258</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-5158-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846667</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411174 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461251583 9780817632755 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846667 |
oclc_num | 863786723 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VII, 418 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Glimm, James 1934- Verfasser (DE-588)140590005 aut Quantum Field Theory and Statistical Mechanics Expositions by James Glimm, Arthur Jaffe Boston, MA Birkhäuser Boston 1985 1 Online-Ressource (VII, 418 p) txt rdacontent c rdamedia cr rdacarrier This volume contains a selection of expository articles on quantum field theory and statistical mechanics by James Glimm and Arthur Jaffe. They include a solution of the original interacting quantum field equations and a description of the physics which these equations contain. Quantum fields were proposed in the late 1920s as the natural framework which combines quantum theory with relativ ity. They have survived ever since. The mathematical description for quantum theory starts with a Hilbert space H of state vectors. Quantum fields are linear operators on this space, which satisfy nonlinear wave equations of fundamental physics, including coupled Dirac, Max well and Yang-Mills equations. The field operators are restricted to satisfy a "locality" requirement that they commute (or anti-commute in the case of fer mions) at space-like separated points. This condition is compatible with finite propagation speed, and hence with special relativity. Asymptotically, these fields converge for large time to linear fields describing free particles. Using these ideas a scattering theory had been developed, based on the existence of local quantum fields Physics Field theory (Physics) Quantum theory Quantum Physics Statistical Physics, Dynamical Systems and Complexity Field Theory and Polynomials Quantentheorie Statistische Mechanik (DE-588)4056999-8 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s 1\p DE-604 Statistische Mechanik (DE-588)4056999-8 s 2\p DE-604 Jaffe, Arthur 1937- Sonstige (DE-588)1089192258 oth https://doi.org/10.1007/978-1-4612-5158-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Glimm, James 1934- Quantum Field Theory and Statistical Mechanics Expositions Physics Field theory (Physics) Quantum theory Quantum Physics Statistical Physics, Dynamical Systems and Complexity Field Theory and Polynomials Quantentheorie Statistische Mechanik (DE-588)4056999-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4056999-8 (DE-588)4047984-5 |
title | Quantum Field Theory and Statistical Mechanics Expositions |
title_auth | Quantum Field Theory and Statistical Mechanics Expositions |
title_exact_search | Quantum Field Theory and Statistical Mechanics Expositions |
title_full | Quantum Field Theory and Statistical Mechanics Expositions by James Glimm, Arthur Jaffe |
title_fullStr | Quantum Field Theory and Statistical Mechanics Expositions by James Glimm, Arthur Jaffe |
title_full_unstemmed | Quantum Field Theory and Statistical Mechanics Expositions by James Glimm, Arthur Jaffe |
title_short | Quantum Field Theory and Statistical Mechanics |
title_sort | quantum field theory and statistical mechanics expositions |
title_sub | Expositions |
topic | Physics Field theory (Physics) Quantum theory Quantum Physics Statistical Physics, Dynamical Systems and Complexity Field Theory and Polynomials Quantentheorie Statistische Mechanik (DE-588)4056999-8 gnd Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Physics Field theory (Physics) Quantum theory Quantum Physics Statistical Physics, Dynamical Systems and Complexity Field Theory and Polynomials Quantentheorie Statistische Mechanik Quantenfeldtheorie |
url | https://doi.org/10.1007/978-1-4612-5158-3 |
work_keys_str_mv | AT glimmjames quantumfieldtheoryandstatisticalmechanicsexpositions AT jaffearthur quantumfieldtheoryandstatisticalmechanicsexpositions |