Wave Propagation in Solids and Fluids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc |
Beschreibung: | 1 Online-Ressource (X, 386p. 58 illus) |
ISBN: | 9781461238867 9781461283904 |
DOI: | 10.1007/978-1-4612-3886-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411146 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461238867 |c Online |9 978-1-4612-3886-7 | ||
020 | |a 9781461283904 |c Print |9 978-1-4612-8390-4 | ||
024 | 7 | |a 10.1007/978-1-4612-3886-7 |2 doi | |
035 | |a (OCoLC)863743623 | ||
035 | |a (DE-599)BVBBV042411146 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Davis, Julian L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wave Propagation in Solids and Fluids |c by Julian L. Davis |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (X, 386p. 58 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Automotive Engineering | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Hamilton-Jacobi-Theorie |0 (DE-588)4278207-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Jacobi-Differentialgleichung |0 (DE-588)4158954-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gas |0 (DE-588)4019320-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fluid |0 (DE-588)4017690-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenausbreitung |0 (DE-588)4121912-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 0 | 1 | |a Hamilton-Jacobi-Theorie |0 (DE-588)4278207-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 1 | 1 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 2 | 1 | |a Hamilton-Jacobi-Differentialgleichung |0 (DE-588)4158954-3 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Fluid |0 (DE-588)4017690-3 |D s |
689 | 3 | 1 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 4 | 1 | |a Wellenausbreitung |0 (DE-588)4121912-0 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Gas |0 (DE-588)4019320-2 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3886-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846639 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072142778368 |
---|---|
any_adam_object | |
author | Davis, Julian L. |
author_facet | Davis, Julian L. |
author_role | aut |
author_sort | Davis, Julian L. |
author_variant | j l d jl jld |
building | Verbundindex |
bvnumber | BV042411146 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863743623 (DE-599)BVBBV042411146 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-3886-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04855nmm a2200853zc 4500</leader><controlfield tag="001">BV042411146</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461238867</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3886-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461283904</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-8390-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3886-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863743623</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411146</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Julian L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wave Propagation in Solids and Fluids</subfield><subfield code="c">by Julian L. Davis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 386p. 58 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automotive Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Jacobi-Theorie</subfield><subfield code="0">(DE-588)4278207-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Jacobi-Differentialgleichung</subfield><subfield code="0">(DE-588)4158954-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gas</subfield><subfield code="0">(DE-588)4019320-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fluid</subfield><subfield code="0">(DE-588)4017690-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamilton-Jacobi-Theorie</subfield><subfield code="0">(DE-588)4278207-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Hamilton-Jacobi-Differentialgleichung</subfield><subfield code="0">(DE-588)4158954-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Fluid</subfield><subfield code="0">(DE-588)4017690-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Wellenausbreitung</subfield><subfield code="0">(DE-588)4121912-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Gas</subfield><subfield code="0">(DE-588)4019320-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3886-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846639</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411146 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461238867 9781461283904 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846639 |
oclc_num | 863743623 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 386p. 58 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
spelling | Davis, Julian L. Verfasser aut Wave Propagation in Solids and Fluids by Julian L. Davis New York, NY Springer New York 1988 1 Online-Ressource (X, 386p. 58 illus) txt rdacontent c rdamedia cr rdacarrier The purpose of this volume is to present a clear and systematic account of the mathematical methods of wave phenomena in solids, gases, and water that will be readily accessible to physicists and engineers. The emphasis is on developing the necessary mathematical techniques, and on showing how these mathematical concepts can be effective in unifying the physics of wave propagation in a variety of physical settings: sound and shock waves in gases, water waves, and stress waves in solids. Nonlinear effects and asymptotic phenomena will be discussed. Wave propagation in continuous media (solid, liquid, or gas) has as its foundation the three basic conservation laws of physics: conservation of mass, momentum, and energy, which will be described in various sections of the book in their proper physical setting. These conservation laws are expressed either in the Lagrangian or the Eulerian representation depending on whether the boundaries are relatively fixed or moving. In any case, these laws of physics allow us to derive the "field equations" which are expressed as systems of partial differential equations. For wave propagation phenomena these equations are said to be "hyperbolic" and, in general, nonlinear in the sense of being "quasi linear" . We therefore attempt to determine the properties of a system of "quasi linear hyperbolic" partial differential equations which will allow us to calculate the displacement, velocity fields, etc Physics Mechanics Engineering Fluid- and Aerodynamics Engineering, general Automotive Engineering Theoretical, Mathematical and Computational Physics Ingenieurwissenschaften Hamilton-Jacobi-Theorie (DE-588)4278207-7 gnd rswk-swf Hamilton-Jacobi-Differentialgleichung (DE-588)4158954-3 gnd rswk-swf Gas (DE-588)4019320-2 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf Fluid (DE-588)4017690-3 gnd rswk-swf Wellenausbreitung (DE-588)4121912-0 gnd rswk-swf Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Wellenausbreitung (DE-588)4121912-0 s Hamilton-Jacobi-Theorie (DE-588)4278207-7 s 1\p DE-604 Kontinuumsmechanik (DE-588)4032296-8 s 2\p DE-604 Hamilton-Jacobi-Differentialgleichung (DE-588)4158954-3 s 3\p DE-604 Fluid (DE-588)4017690-3 s 4\p DE-604 Festkörper (DE-588)4016918-2 s 5\p DE-604 Gas (DE-588)4019320-2 s 6\p DE-604 Mathematische Methode (DE-588)4155620-3 s 7\p DE-604 https://doi.org/10.1007/978-1-4612-3886-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Davis, Julian L. Wave Propagation in Solids and Fluids Physics Mechanics Engineering Fluid- and Aerodynamics Engineering, general Automotive Engineering Theoretical, Mathematical and Computational Physics Ingenieurwissenschaften Hamilton-Jacobi-Theorie (DE-588)4278207-7 gnd Hamilton-Jacobi-Differentialgleichung (DE-588)4158954-3 gnd Gas (DE-588)4019320-2 gnd Festkörper (DE-588)4016918-2 gnd Fluid (DE-588)4017690-3 gnd Wellenausbreitung (DE-588)4121912-0 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd Mathematische Methode (DE-588)4155620-3 gnd |
subject_GND | (DE-588)4278207-7 (DE-588)4158954-3 (DE-588)4019320-2 (DE-588)4016918-2 (DE-588)4017690-3 (DE-588)4121912-0 (DE-588)4032296-8 (DE-588)4155620-3 |
title | Wave Propagation in Solids and Fluids |
title_auth | Wave Propagation in Solids and Fluids |
title_exact_search | Wave Propagation in Solids and Fluids |
title_full | Wave Propagation in Solids and Fluids by Julian L. Davis |
title_fullStr | Wave Propagation in Solids and Fluids by Julian L. Davis |
title_full_unstemmed | Wave Propagation in Solids and Fluids by Julian L. Davis |
title_short | Wave Propagation in Solids and Fluids |
title_sort | wave propagation in solids and fluids |
topic | Physics Mechanics Engineering Fluid- and Aerodynamics Engineering, general Automotive Engineering Theoretical, Mathematical and Computational Physics Ingenieurwissenschaften Hamilton-Jacobi-Theorie (DE-588)4278207-7 gnd Hamilton-Jacobi-Differentialgleichung (DE-588)4158954-3 gnd Gas (DE-588)4019320-2 gnd Festkörper (DE-588)4016918-2 gnd Fluid (DE-588)4017690-3 gnd Wellenausbreitung (DE-588)4121912-0 gnd Kontinuumsmechanik (DE-588)4032296-8 gnd Mathematische Methode (DE-588)4155620-3 gnd |
topic_facet | Physics Mechanics Engineering Fluid- and Aerodynamics Engineering, general Automotive Engineering Theoretical, Mathematical and Computational Physics Ingenieurwissenschaften Hamilton-Jacobi-Theorie Hamilton-Jacobi-Differentialgleichung Gas Festkörper Fluid Wellenausbreitung Kontinuumsmechanik Mathematische Methode |
url | https://doi.org/10.1007/978-1-4612-3886-7 |
work_keys_str_mv | AT davisjulianl wavepropagationinsolidsandfluids |