Stochastic Finite Elements: A Spectral Approach:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1991
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials |
Beschreibung: | 1 Online-Ressource (X, 214p. 94 illus) |
ISBN: | 9781461230946 9781461277958 |
DOI: | 10.1007/978-1-4612-3094-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411128 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461230946 |c Online |9 978-1-4612-3094-6 | ||
020 | |a 9781461277958 |c Print |9 978-1-4612-7795-8 | ||
024 | 7 | |a 10.1007/978-1-4612-3094-6 |2 doi | |
035 | |a (OCoLC)863720829 | ||
035 | |a (DE-599)BVBBV042411128 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Ghanem, Roger G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Finite Elements: A Spectral Approach |c by Roger G. Ghanem, Pol D. Spanos |
264 | 1 | |a New York, NY |b Springer New York |c 1991 | |
300 | |a 1 Online-Ressource (X, 214p. 94 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials | ||
650 | 4 | |a Physics | |
650 | 4 | |a Chemistry / Mathematics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Engineering | |
650 | 4 | |a Civil engineering | |
650 | 4 | |a Civil Engineering | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Math. Applications in Chemistry | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Chemie | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Strukturmechanik |0 (DE-588)4126904-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches System |0 (DE-588)4057635-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Mechanik |0 (DE-588)4201240-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strukturmechanik |0 (DE-588)4126904-4 |D s |
689 | 0 | 1 | |a Stochastischer Prozess |0 (DE-588)4057630-9 |D s |
689 | 0 | 2 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 1 | 1 | |a Stochastische Mechanik |0 (DE-588)4201240-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Stochastisches System |0 (DE-588)4057635-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Spanos, Pol D. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-3094-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846621 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072112369664 |
---|---|
any_adam_object | |
author | Ghanem, Roger G. |
author_facet | Ghanem, Roger G. |
author_role | aut |
author_sort | Ghanem, Roger G. |
author_variant | r g g rg rgg |
building | Verbundindex |
bvnumber | BV042411128 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863720829 (DE-599)BVBBV042411128 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-3094-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03928nmm a2200709zc 4500</leader><controlfield tag="001">BV042411128</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461230946</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-3094-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461277958</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7795-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-3094-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863720829</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411128</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ghanem, Roger G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Finite Elements: A Spectral Approach</subfield><subfield code="c">by Roger G. Ghanem, Pol D. Spanos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 214p. 94 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Civil Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches System</subfield><subfield code="0">(DE-588)4057635-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Mechanik</subfield><subfield code="0">(DE-588)4201240-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strukturmechanik</subfield><subfield code="0">(DE-588)4126904-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastischer Prozess</subfield><subfield code="0">(DE-588)4057630-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Stochastische Mechanik</subfield><subfield code="0">(DE-588)4201240-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Stochastisches System</subfield><subfield code="0">(DE-588)4057635-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spanos, Pol D.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-3094-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846621</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411128 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461230946 9781461277958 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846621 |
oclc_num | 863720829 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (X, 214p. 94 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Springer New York |
record_format | marc |
spelling | Ghanem, Roger G. Verfasser aut Stochastic Finite Elements: A Spectral Approach by Roger G. Ghanem, Pol D. Spanos New York, NY Springer New York 1991 1 Online-Ressource (X, 214p. 94 illus) txt rdacontent c rdamedia cr rdacarrier This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials Physics Chemistry / Mathematics Mechanics Engineering Civil engineering Civil Engineering Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Strukturmechanik (DE-588)4126904-4 gnd rswk-swf Stochastischer Prozess (DE-588)4057630-9 gnd rswk-swf Stochastisches System (DE-588)4057635-8 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf Stochastische Mechanik (DE-588)4201240-5 gnd rswk-swf Strukturmechanik (DE-588)4126904-4 s Stochastischer Prozess (DE-588)4057630-9 s Finite-Elemente-Methode (DE-588)4017233-8 s 1\p DE-604 Stochastische Mechanik (DE-588)4201240-5 s 2\p DE-604 Stochastisches System (DE-588)4057635-8 s 3\p DE-604 Spanos, Pol D. Sonstige oth https://doi.org/10.1007/978-1-4612-3094-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Ghanem, Roger G. Stochastic Finite Elements: A Spectral Approach Physics Chemistry / Mathematics Mechanics Engineering Civil engineering Civil Engineering Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Strukturmechanik (DE-588)4126904-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastisches System (DE-588)4057635-8 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Stochastische Mechanik (DE-588)4201240-5 gnd |
subject_GND | (DE-588)4126904-4 (DE-588)4057630-9 (DE-588)4057635-8 (DE-588)4017233-8 (DE-588)4201240-5 |
title | Stochastic Finite Elements: A Spectral Approach |
title_auth | Stochastic Finite Elements: A Spectral Approach |
title_exact_search | Stochastic Finite Elements: A Spectral Approach |
title_full | Stochastic Finite Elements: A Spectral Approach by Roger G. Ghanem, Pol D. Spanos |
title_fullStr | Stochastic Finite Elements: A Spectral Approach by Roger G. Ghanem, Pol D. Spanos |
title_full_unstemmed | Stochastic Finite Elements: A Spectral Approach by Roger G. Ghanem, Pol D. Spanos |
title_short | Stochastic Finite Elements: A Spectral Approach |
title_sort | stochastic finite elements a spectral approach |
topic | Physics Chemistry / Mathematics Mechanics Engineering Civil engineering Civil Engineering Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Strukturmechanik (DE-588)4126904-4 gnd Stochastischer Prozess (DE-588)4057630-9 gnd Stochastisches System (DE-588)4057635-8 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd Stochastische Mechanik (DE-588)4201240-5 gnd |
topic_facet | Physics Chemistry / Mathematics Mechanics Engineering Civil engineering Civil Engineering Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Strukturmechanik Stochastischer Prozess Stochastisches System Finite-Elemente-Methode Stochastische Mechanik |
url | https://doi.org/10.1007/978-1-4612-3094-6 |
work_keys_str_mv | AT ghanemrogerg stochasticfiniteelementsaspectralapproach AT spanospold stochasticfiniteelementsaspectralapproach |