Renormalization: From Lorentz to Landau (and Beyond)
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this section is to give you a sketch of how quantum field theory works, where Feynman graphs come from and why they are so useful, where the infinities come from, and how we have learned to deal with them without compromising the physical principles involved. I am purposely treating the problem at the level of the 1940s and 1950s, so as to keep the basic ideas clear and avoid the more difficult problems and more sophisticated methods of recent years. I shall relate my discussion simply to quantum electrodynamics (QED) since that is the most familiar case and the case that was in the forefront from the beginning (though in fact I shall ignore many of the special complications that have to be dealt with when you quantize a gauge field). The methods I shall be describing are applicable to all sorts of quantized fields: the detailed factors are different but the structure of the logical development isjust the same. Not surprisingly, though, the renormalization procedure breaks down if the theory in question is nonrenormalizable. Whether nonrenormalizable theories are theories at all is a matter for debate; in any case, they hold no practical interest for physicists since they are essentially unusable. Quantum electrodynamics was devised in 1927 by Dirac, less than a year after the Schrodinger equation appeared and before the Dirac equation for the relativistic electron had been invented |
Beschreibung: | 1 Online-Ressource (VII, 192p. 14 illus) |
ISBN: | 9781461227205 9780387944012 |
DOI: | 10.1007/978-1-4612-2720-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411112 | ||
003 | DE-604 | ||
005 | 20171221 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461227205 |c Online |9 978-1-4612-2720-5 | ||
020 | |a 9780387944012 |c Print |9 978-0-387-94401-2 | ||
024 | 7 | |a 10.1007/978-1-4612-2720-5 |2 doi | |
035 | |a (OCoLC)863790997 | ||
035 | |a (DE-599)BVBBV042411112 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Renormalization |b From Lorentz to Landau (and Beyond) |c edited by Laurie M. Brown |
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (VII, 192p. 14 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The purpose of this section is to give you a sketch of how quantum field theory works, where Feynman graphs come from and why they are so useful, where the infinities come from, and how we have learned to deal with them without compromising the physical principles involved. I am purposely treating the problem at the level of the 1940s and 1950s, so as to keep the basic ideas clear and avoid the more difficult problems and more sophisticated methods of recent years. I shall relate my discussion simply to quantum electrodynamics (QED) since that is the most familiar case and the case that was in the forefront from the beginning (though in fact I shall ignore many of the special complications that have to be dealt with when you quantize a gauge field). The methods I shall be describing are applicable to all sorts of quantized fields: the detailed factors are different but the structure of the logical development isjust the same. Not surprisingly, though, the renormalization procedure breaks down if the theory in question is nonrenormalizable. Whether nonrenormalizable theories are theories at all is a matter for debate; in any case, they hold no practical interest for physicists since they are essentially unusable. Quantum electrodynamics was devised in 1927 by Dirac, less than a year after the Schrodinger equation appeared and before the Dirac equation for the relativistic electron had been invented | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Renormierungsgruppe |0 (DE-588)4177773-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Renormierung |0 (DE-588)4128419-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Renormierung |0 (DE-588)4128419-7 |D s |
689 | 0 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Renormierungsgruppe |0 (DE-588)4177773-6 |D s |
689 | 1 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Brown, Laurie M. |4 edt | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2720-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846605 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153072066232320 |
---|---|
any_adam_object | |
author2 | Brown, Laurie M. |
author2_role | edt |
author2_variant | l m b lm lmb |
author_facet | Brown, Laurie M. |
building | Verbundindex |
bvnumber | BV042411112 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863790997 (DE-599)BVBBV042411112 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-2720-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03350nmm a2200541zc 4500</leader><controlfield tag="001">BV042411112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171221 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461227205</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2720-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387944012</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94401-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2720-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863790997</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Renormalization</subfield><subfield code="b">From Lorentz to Landau (and Beyond)</subfield><subfield code="c">edited by Laurie M. Brown</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 192p. 14 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this section is to give you a sketch of how quantum field theory works, where Feynman graphs come from and why they are so useful, where the infinities come from, and how we have learned to deal with them without compromising the physical principles involved. I am purposely treating the problem at the level of the 1940s and 1950s, so as to keep the basic ideas clear and avoid the more difficult problems and more sophisticated methods of recent years. I shall relate my discussion simply to quantum electrodynamics (QED) since that is the most familiar case and the case that was in the forefront from the beginning (though in fact I shall ignore many of the special complications that have to be dealt with when you quantize a gauge field). The methods I shall be describing are applicable to all sorts of quantized fields: the detailed factors are different but the structure of the logical development isjust the same. Not surprisingly, though, the renormalization procedure breaks down if the theory in question is nonrenormalizable. Whether nonrenormalizable theories are theories at all is a matter for debate; in any case, they hold no practical interest for physicists since they are essentially unusable. Quantum electrodynamics was devised in 1927 by Dirac, less than a year after the Schrodinger equation appeared and before the Dirac equation for the relativistic electron had been invented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Renormierungsgruppe</subfield><subfield code="0">(DE-588)4177773-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Renormierung</subfield><subfield code="0">(DE-588)4128419-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Renormierungsgruppe</subfield><subfield code="0">(DE-588)4177773-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brown, Laurie M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2720-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846605</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411112 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461227205 9780387944012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846605 |
oclc_num | 863790997 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VII, 192p. 14 illus) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
spelling | Renormalization From Lorentz to Landau (and Beyond) edited by Laurie M. Brown New York, NY Springer New York 1993 1 Online-Ressource (VII, 192p. 14 illus) txt rdacontent c rdamedia cr rdacarrier The purpose of this section is to give you a sketch of how quantum field theory works, where Feynman graphs come from and why they are so useful, where the infinities come from, and how we have learned to deal with them without compromising the physical principles involved. I am purposely treating the problem at the level of the 1940s and 1950s, so as to keep the basic ideas clear and avoid the more difficult problems and more sophisticated methods of recent years. I shall relate my discussion simply to quantum electrodynamics (QED) since that is the most familiar case and the case that was in the forefront from the beginning (though in fact I shall ignore many of the special complications that have to be dealt with when you quantize a gauge field). The methods I shall be describing are applicable to all sorts of quantized fields: the detailed factors are different but the structure of the logical development isjust the same. Not surprisingly, though, the renormalization procedure breaks down if the theory in question is nonrenormalizable. Whether nonrenormalizable theories are theories at all is a matter for debate; in any case, they hold no practical interest for physicists since they are essentially unusable. Quantum electrodynamics was devised in 1927 by Dirac, less than a year after the Schrodinger equation appeared and before the Dirac equation for the relativistic electron had been invented Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Renormierungsgruppe (DE-588)4177773-6 gnd rswk-swf Renormierung (DE-588)4128419-7 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Renormierung (DE-588)4128419-7 s Geschichte (DE-588)4020517-4 s 1\p DE-604 Renormierungsgruppe (DE-588)4177773-6 s 2\p DE-604 Brown, Laurie M. edt https://doi.org/10.1007/978-1-4612-2720-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Renormalization From Lorentz to Landau (and Beyond) Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Renormierungsgruppe (DE-588)4177773-6 gnd Renormierung (DE-588)4128419-7 gnd Geschichte (DE-588)4020517-4 gnd |
subject_GND | (DE-588)4177773-6 (DE-588)4128419-7 (DE-588)4020517-4 |
title | Renormalization From Lorentz to Landau (and Beyond) |
title_auth | Renormalization From Lorentz to Landau (and Beyond) |
title_exact_search | Renormalization From Lorentz to Landau (and Beyond) |
title_full | Renormalization From Lorentz to Landau (and Beyond) edited by Laurie M. Brown |
title_fullStr | Renormalization From Lorentz to Landau (and Beyond) edited by Laurie M. Brown |
title_full_unstemmed | Renormalization From Lorentz to Landau (and Beyond) edited by Laurie M. Brown |
title_short | Renormalization |
title_sort | renormalization from lorentz to landau and beyond |
title_sub | From Lorentz to Landau (and Beyond) |
topic | Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Renormierungsgruppe (DE-588)4177773-6 gnd Renormierung (DE-588)4128419-7 gnd Geschichte (DE-588)4020517-4 gnd |
topic_facet | Physics Mathematical physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Renormierungsgruppe Renormierung Geschichte |
url | https://doi.org/10.1007/978-1-4612-2720-5 |
work_keys_str_mv | AT brownlauriem renormalizationfromlorentztolandauandbeyond |