Multiple Scattering in Solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2000
|
Schriftenreihe: | Graduate Texts in Contemporary Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an array of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equation defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global physical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the Schrödinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid materials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation |
Beschreibung: | 1 Online-Ressource (XIII, 285 p) |
ISBN: | 9781461212904 9781461270805 |
ISSN: | 0938-037X |
DOI: | 10.1007/978-1-4612-1290-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411066 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461212904 |c Online |9 978-1-4612-1290-4 | ||
020 | |a 9781461270805 |c Print |9 978-1-4612-7080-5 | ||
024 | 7 | |a 10.1007/978-1-4612-1290-4 |2 doi | |
035 | |a (OCoLC)863675932 | ||
035 | |a (DE-599)BVBBV042411066 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.41 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Gonis, Antonios |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multiple Scattering in Solids |c by Antonios Gonis, William H. Butler |
264 | 1 | |a New York, NY |b Springer New York |c 2000 | |
300 | |a 1 Online-Ressource (XIII, 285 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Contemporary Physics |x 0938-037X | |
500 | |a The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an array of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equation defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global physical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the Schrödinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid materials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation | ||
650 | 4 | |a Physics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Condensed Matter Physics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Elektronenstruktur |0 (DE-588)4129531-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielfachstreuung |0 (DE-588)4188254-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielfachstreuung |0 (DE-588)4188254-4 |D s |
689 | 0 | 1 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 0 | 2 | |a Elektronenstruktur |0 (DE-588)4129531-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Butler, William H. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1290-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846559 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071970811904 |
---|---|
any_adam_object | |
author | Gonis, Antonios |
author_facet | Gonis, Antonios |
author_role | aut |
author_sort | Gonis, Antonios |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV042411066 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863675932 (DE-599)BVBBV042411066 |
dewey-full | 530.41 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.41 |
dewey-search | 530.41 |
dewey-sort | 3530.41 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-1290-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03391nmm a2200541zc 4500</leader><controlfield tag="001">BV042411066</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461212904</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1290-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461270805</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7080-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1290-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863675932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411066</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.41</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gonis, Antonios</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiple Scattering in Solids</subfield><subfield code="c">by Antonios Gonis, William H. Butler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 285 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Contemporary Physics</subfield><subfield code="x">0938-037X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an array of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equation defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global physical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the Schrödinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid materials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronenstruktur</subfield><subfield code="0">(DE-588)4129531-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielfachstreuung</subfield><subfield code="0">(DE-588)4188254-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielfachstreuung</subfield><subfield code="0">(DE-588)4188254-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektronenstruktur</subfield><subfield code="0">(DE-588)4129531-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butler, William H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1290-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846559</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411066 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461212904 9781461270805 |
issn | 0938-037X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846559 |
oclc_num | 863675932 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 285 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Contemporary Physics |
spelling | Gonis, Antonios Verfasser aut Multiple Scattering in Solids by Antonios Gonis, William H. Butler New York, NY Springer New York 2000 1 Online-Ressource (XIII, 285 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Contemporary Physics 0938-037X The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an array of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equation defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global physical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the Schrödinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid materials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation Physics Mathematical physics Condensed Matter Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Elektronenstruktur (DE-588)4129531-6 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf Vielfachstreuung (DE-588)4188254-4 gnd rswk-swf Vielfachstreuung (DE-588)4188254-4 s Festkörper (DE-588)4016918-2 s Elektronenstruktur (DE-588)4129531-6 s 1\p DE-604 Butler, William H. Sonstige oth https://doi.org/10.1007/978-1-4612-1290-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gonis, Antonios Multiple Scattering in Solids Physics Mathematical physics Condensed Matter Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Elektronenstruktur (DE-588)4129531-6 gnd Festkörper (DE-588)4016918-2 gnd Vielfachstreuung (DE-588)4188254-4 gnd |
subject_GND | (DE-588)4129531-6 (DE-588)4016918-2 (DE-588)4188254-4 |
title | Multiple Scattering in Solids |
title_auth | Multiple Scattering in Solids |
title_exact_search | Multiple Scattering in Solids |
title_full | Multiple Scattering in Solids by Antonios Gonis, William H. Butler |
title_fullStr | Multiple Scattering in Solids by Antonios Gonis, William H. Butler |
title_full_unstemmed | Multiple Scattering in Solids by Antonios Gonis, William H. Butler |
title_short | Multiple Scattering in Solids |
title_sort | multiple scattering in solids |
topic | Physics Mathematical physics Condensed Matter Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Elektronenstruktur (DE-588)4129531-6 gnd Festkörper (DE-588)4016918-2 gnd Vielfachstreuung (DE-588)4188254-4 gnd |
topic_facet | Physics Mathematical physics Condensed Matter Physics Mathematical Methods in Physics Numerical and Computational Physics Mathematische Physik Elektronenstruktur Festkörper Vielfachstreuung |
url | https://doi.org/10.1007/978-1-4612-1290-4 |
work_keys_str_mv | AT gonisantonios multiplescatteringinsolids AT butlerwilliamh multiplescatteringinsolids |