Impulse Time-Domain Electromagnetics of Continuous Media:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1999
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful theoretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the standardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-disciplinary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media |
Beschreibung: | 1 Online-Ressource (XV, 168 p) |
ISBN: | 9781461207733 9781461268963 |
DOI: | 10.1007/978-1-4612-0773-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411051 | ||
003 | DE-604 | ||
005 | 20171113 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461207733 |c Online |9 978-1-4612-0773-3 | ||
020 | |a 9781461268963 |c Print |9 978-1-4612-6896-3 | ||
024 | 7 | |a 10.1007/978-1-4612-0773-3 |2 doi | |
035 | |a (OCoLC)905426271 | ||
035 | |a (DE-599)BVBBV042411051 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.15 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Shvartsburg, A. B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Impulse Time-Domain Electromagnetics of Continuous Media |c by A. B. Shvartsburg |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1999 | |
300 | |a 1 Online-Ressource (XV, 168 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful theoretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the standardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-disciplinary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media | ||
650 | 4 | |a Physics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Materials | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Ultrakurzer Lichtimpuls |0 (DE-588)4222149-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitbereichsdarstellung |0 (DE-588)4242739-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ausbreitung |0 (DE-588)4003694-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kurzzeitimpuls |0 (DE-588)4166259-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |D s |
689 | 0 | 1 | |a Kurzzeitimpuls |0 (DE-588)4166259-3 |D s |
689 | 0 | 2 | |a Ausbreitung |0 (DE-588)4003694-7 |D s |
689 | 0 | 3 | |a Zeitbereichsdarstellung |0 (DE-588)4242739-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Ultrakurzer Lichtimpuls |0 (DE-588)4222149-3 |D s |
689 | 1 | 1 | |a Ausbreitung |0 (DE-588)4003694-7 |D s |
689 | 1 | 2 | |a Zeitbereichsdarstellung |0 (DE-588)4242739-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0773-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846544 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071956131840 |
---|---|
any_adam_object | |
author | Shvartsburg, A. B. |
author_facet | Shvartsburg, A. B. |
author_role | aut |
author_sort | Shvartsburg, A. B. |
author_variant | a b s ab abs |
building | Verbundindex |
bvnumber | BV042411051 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905426271 (DE-599)BVBBV042411051 |
dewey-full | 530.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15 |
dewey-search | 530.15 |
dewey-sort | 3530.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-0773-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03716nmm a2200697zc 4500</leader><controlfield tag="001">BV042411051</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207733</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0773-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268963</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6896-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0773-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905426271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411051</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shvartsburg, A. B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impulse Time-Domain Electromagnetics of Continuous Media</subfield><subfield code="c">by A. B. Shvartsburg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 168 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful theoretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the standardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-disciplinary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ultrakurzer Lichtimpuls</subfield><subfield code="0">(DE-588)4222149-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitbereichsdarstellung</subfield><subfield code="0">(DE-588)4242739-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ausbreitung</subfield><subfield code="0">(DE-588)4003694-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurzzeitimpuls</subfield><subfield code="0">(DE-588)4166259-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kurzzeitimpuls</subfield><subfield code="0">(DE-588)4166259-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ausbreitung</subfield><subfield code="0">(DE-588)4003694-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Zeitbereichsdarstellung</subfield><subfield code="0">(DE-588)4242739-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ultrakurzer Lichtimpuls</subfield><subfield code="0">(DE-588)4222149-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Ausbreitung</subfield><subfield code="0">(DE-588)4003694-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Zeitbereichsdarstellung</subfield><subfield code="0">(DE-588)4242739-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0773-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846544</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411051 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461207733 9781461268963 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846544 |
oclc_num | 905426271 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 168 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Shvartsburg, A. B. Verfasser aut Impulse Time-Domain Electromagnetics of Continuous Media by A. B. Shvartsburg Boston, MA Birkhäuser Boston 1999 1 Online-Ressource (XV, 168 p) txt rdacontent c rdamedia cr rdacarrier tion of fields as a product of coordinate-dependent and time-dependent factors. The temporal variations of both media and fields are given by Fourier expansions. The successes of radiotechnique provided fertile ground for the dominance of sinusoidal waves in wave physics. This approach proved to be a powerful theoretical tool, since researchers were dealing with long trains of slowly varying quasi-monochromatic waves. However, the success of this concept and the standardizability of related designs engendered a peculiar psychological hypnosis of Fourier electromagnetics, which took over as a model for wave phenomena in such cross-disciplinary areas of physics as optics and acoustics. Yet in providing a description of alternating fields, the presentation of such fields in terms of traveling waves with frequency wand wave number k is not a law of nature. One can see that such a presentation is not even a logical corollary of Maxwell's equations. What is more, this approach has become inadequate today for the analysis of fields excited by ultrashort transients in continuous media Physics Differential equations, partial Mathematics Mathematical physics Engineering mathematics Materials Mathematical Methods in Physics Appl.Mathematics/Computational Methods of Engineering Applications of Mathematics Continuum Mechanics and Mechanics of Materials Partial Differential Equations Mathematik Mathematische Physik Ultrakurzer Lichtimpuls (DE-588)4222149-3 gnd rswk-swf Elektromagnetisches Feld (DE-588)4014305-3 gnd rswk-swf Zeitbereichsdarstellung (DE-588)4242739-3 gnd rswk-swf Ausbreitung (DE-588)4003694-7 gnd rswk-swf Kurzzeitimpuls (DE-588)4166259-3 gnd rswk-swf Elektromagnetisches Feld (DE-588)4014305-3 s Kurzzeitimpuls (DE-588)4166259-3 s Ausbreitung (DE-588)4003694-7 s Zeitbereichsdarstellung (DE-588)4242739-3 s 1\p DE-604 Ultrakurzer Lichtimpuls (DE-588)4222149-3 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-0773-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shvartsburg, A. B. Impulse Time-Domain Electromagnetics of Continuous Media Physics Differential equations, partial Mathematics Mathematical physics Engineering mathematics Materials Mathematical Methods in Physics Appl.Mathematics/Computational Methods of Engineering Applications of Mathematics Continuum Mechanics and Mechanics of Materials Partial Differential Equations Mathematik Mathematische Physik Ultrakurzer Lichtimpuls (DE-588)4222149-3 gnd Elektromagnetisches Feld (DE-588)4014305-3 gnd Zeitbereichsdarstellung (DE-588)4242739-3 gnd Ausbreitung (DE-588)4003694-7 gnd Kurzzeitimpuls (DE-588)4166259-3 gnd |
subject_GND | (DE-588)4222149-3 (DE-588)4014305-3 (DE-588)4242739-3 (DE-588)4003694-7 (DE-588)4166259-3 |
title | Impulse Time-Domain Electromagnetics of Continuous Media |
title_auth | Impulse Time-Domain Electromagnetics of Continuous Media |
title_exact_search | Impulse Time-Domain Electromagnetics of Continuous Media |
title_full | Impulse Time-Domain Electromagnetics of Continuous Media by A. B. Shvartsburg |
title_fullStr | Impulse Time-Domain Electromagnetics of Continuous Media by A. B. Shvartsburg |
title_full_unstemmed | Impulse Time-Domain Electromagnetics of Continuous Media by A. B. Shvartsburg |
title_short | Impulse Time-Domain Electromagnetics of Continuous Media |
title_sort | impulse time domain electromagnetics of continuous media |
topic | Physics Differential equations, partial Mathematics Mathematical physics Engineering mathematics Materials Mathematical Methods in Physics Appl.Mathematics/Computational Methods of Engineering Applications of Mathematics Continuum Mechanics and Mechanics of Materials Partial Differential Equations Mathematik Mathematische Physik Ultrakurzer Lichtimpuls (DE-588)4222149-3 gnd Elektromagnetisches Feld (DE-588)4014305-3 gnd Zeitbereichsdarstellung (DE-588)4242739-3 gnd Ausbreitung (DE-588)4003694-7 gnd Kurzzeitimpuls (DE-588)4166259-3 gnd |
topic_facet | Physics Differential equations, partial Mathematics Mathematical physics Engineering mathematics Materials Mathematical Methods in Physics Appl.Mathematics/Computational Methods of Engineering Applications of Mathematics Continuum Mechanics and Mechanics of Materials Partial Differential Equations Mathematik Mathematische Physik Ultrakurzer Lichtimpuls Elektromagnetisches Feld Zeitbereichsdarstellung Ausbreitung Kurzzeitimpuls |
url | https://doi.org/10.1007/978-1-4612-0773-3 |
work_keys_str_mv | AT shvartsburgab impulsetimedomainelectromagneticsofcontinuousmedia |