Models of Neural Networks III: Association, Generalization, and Representation
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1996
|
Schriftenreihe: | Physics of Neural Networks
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization |
Beschreibung: | 1 Online-Ressource (XIII, 311 p) |
ISBN: | 9781461207238 9781461268826 |
ISSN: | 0939-3145 |
DOI: | 10.1007/978-1-4612-0723-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411049 | ||
003 | DE-604 | ||
005 | 20171011 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461207238 |c Online |9 978-1-4612-0723-8 | ||
020 | |a 9781461268826 |c Print |9 978-1-4612-6882-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0723-8 |2 doi | |
035 | |a (OCoLC)863757151 | ||
035 | |a (DE-599)BVBBV042411049 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 621 |2 23 | |
084 | |a PHY 000 |2 stub | ||
245 | 1 | 0 | |a Models of Neural Networks III |b Association, Generalization, and Representation |c edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten |
264 | 1 | |a New York, NY |b Springer New York |c 1996 | |
300 | |a 1 Online-Ressource (XIII, 311 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Physics of Neural Networks |x 0939-3145 | |
500 | |a One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization | ||
650 | 4 | |a Physics | |
650 | 4 | |a Statistical Physics, Dynamical Systems and Complexity | |
700 | 1 | |a Domany, Eytan |4 edt | |
700 | 1 | |a Hemmen, J. Leo |4 edt | |
700 | 1 | |a Schulten, Klaus |4 edt | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0723-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846542 |
Datensatz im Suchindex
_version_ | 1804153071946694656 |
---|---|
any_adam_object | |
author2 | Domany, Eytan Hemmen, J. Leo Schulten, Klaus |
author2_role | edt edt edt |
author2_variant | e d ed j l h jl jlh k s ks |
author_facet | Domany, Eytan Hemmen, J. Leo Schulten, Klaus |
building | Verbundindex |
bvnumber | BV042411049 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863757151 (DE-599)BVBBV042411049 |
dewey-full | 621 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621 |
dewey-search | 621 |
dewey-sort | 3621 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-0723-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02362nmm a2200409zc 4500</leader><controlfield tag="001">BV042411049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171011 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207238</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0723-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268826</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6882-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0723-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757151</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Models of Neural Networks III</subfield><subfield code="b">Association, Generalization, and Representation</subfield><subfield code="c">edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 311 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Physics of Neural Networks</subfield><subfield code="x">0939-3145</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Physics, Dynamical Systems and Complexity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Domany, Eytan</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hemmen, J. Leo</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schulten, Klaus</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0723-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846542</subfield></datafield></record></collection> |
id | DE-604.BV042411049 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461207238 9781461268826 |
issn | 0939-3145 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846542 |
oclc_num | 863757151 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 311 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer New York |
record_format | marc |
series2 | Physics of Neural Networks |
spelling | Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten New York, NY Springer New York 1996 1 Online-Ressource (XIII, 311 p) txt rdacontent c rdamedia cr rdacarrier Physics of Neural Networks 0939-3145 One of the most challenging and fascinating problems of the theory of neural nets is that of asymptotic behavior, of how a system behaves as time proceeds. This is of particular relevance to many practical applications. Here we focus on association, generalization, and representation. We turn to the last topic first. The introductory chapter, "Global Analysis of Recurrent Neural Networks," by Andreas Herz presents an in-depth analysis of how to construct a Lyapunov function for various types of dynamics and neural coding. It includes a review of the recent work with John Hopfield on integrate-and fire neurons with local interactions. The chapter, "Receptive Fields and Maps in the Visual Cortex: Models of Ocular Dominance and Orientation Columns" by Ken Miller, explains how the primary visual cortex may asymptotically gain its specific structure through a self-organization process based on Hebbian learning. His argument since has been shown to be rather susceptible to generalization Physics Statistical Physics, Dynamical Systems and Complexity Domany, Eytan edt Hemmen, J. Leo edt Schulten, Klaus edt https://doi.org/10.1007/978-1-4612-0723-8 Verlag Volltext |
spellingShingle | Models of Neural Networks III Association, Generalization, and Representation Physics Statistical Physics, Dynamical Systems and Complexity |
title | Models of Neural Networks III Association, Generalization, and Representation |
title_auth | Models of Neural Networks III Association, Generalization, and Representation |
title_exact_search | Models of Neural Networks III Association, Generalization, and Representation |
title_full | Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten |
title_fullStr | Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten |
title_full_unstemmed | Models of Neural Networks III Association, Generalization, and Representation edited by Eytan Domany, J. Leo Hemmen, Klaus Schulten |
title_short | Models of Neural Networks III |
title_sort | models of neural networks iii association generalization and representation |
title_sub | Association, Generalization, and Representation |
topic | Physics Statistical Physics, Dynamical Systems and Complexity |
topic_facet | Physics Statistical Physics, Dynamical Systems and Complexity |
url | https://doi.org/10.1007/978-1-4612-0723-8 |
work_keys_str_mv | AT domanyeytan modelsofneuralnetworksiiiassociationgeneralizationandrepresentation AT hemmenjleo modelsofneuralnetworksiiiassociationgeneralizationandrepresentation AT schultenklaus modelsofneuralnetworksiiiassociationgeneralizationandrepresentation |