Quantum Theory of Many-Body Systems: Techniques and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Graduate Texts in Contemporary Physics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to |
Beschreibung: | 1 Online-Ressource (XV, 229 p) |
ISBN: | 9781461205951 9781461268314 |
ISSN: | 0938-037X |
DOI: | 10.1007/978-1-4612-0595-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042411045 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461205951 |c Online |9 978-1-4612-0595-1 | ||
020 | |a 9781461268314 |c Print |9 978-1-4612-6831-4 | ||
024 | 7 | |a 10.1007/978-1-4612-0595-1 |2 doi | |
035 | |a (OCoLC)863682204 | ||
035 | |a (DE-599)BVBBV042411045 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 530.12 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Zagoskin, Alexandre M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Quantum Theory of Many-Body Systems |b Techniques and Applications |c by Alexandre M. Zagoskin |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XV, 229 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Contemporary Physics |x 0938-037X | |
500 | |a Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to | ||
650 | 4 | |a Physics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Quantum Information Technology, Spintronics | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Vielkörperproblem |0 (DE-588)4078900-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Vielteilchentheorie |0 (DE-588)4331960-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Green-Funktion |0 (DE-588)4158123-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quasiteilchen |0 (DE-588)4140168-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 0 | 1 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 0 | 2 | |a Quasiteilchen |0 (DE-588)4140168-2 |D s |
689 | 0 | 3 | |a Green-Funktion |0 (DE-588)4158123-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Vielkörperproblem |0 (DE-588)4078900-7 |D s |
689 | 1 | 1 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Vielteilchentheorie |0 (DE-588)4331960-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0595-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846538 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071939354624 |
---|---|
any_adam_object | |
author | Zagoskin, Alexandre M. |
author_facet | Zagoskin, Alexandre M. |
author_role | aut |
author_sort | Zagoskin, Alexandre M. |
author_variant | a m z am amz |
building | Verbundindex |
bvnumber | BV042411045 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)863682204 (DE-599)BVBBV042411045 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/978-1-4612-0595-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04266nmm a2200649zc 4500</leader><controlfield tag="001">BV042411045</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461205951</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0595-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268314</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6831-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0595-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863682204</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042411045</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zagoskin, Alexandre M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Theory of Many-Body Systems</subfield><subfield code="b">Techniques and Applications</subfield><subfield code="c">by Alexandre M. Zagoskin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 229 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Contemporary Physics</subfield><subfield code="x">0938-037X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Information Technology, Spintronics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vielteilchentheorie</subfield><subfield code="0">(DE-588)4331960-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quasiteilchen</subfield><subfield code="0">(DE-588)4140168-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quasiteilchen</subfield><subfield code="0">(DE-588)4140168-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Green-Funktion</subfield><subfield code="0">(DE-588)4158123-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Vielkörperproblem</subfield><subfield code="0">(DE-588)4078900-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Vielteilchentheorie</subfield><subfield code="0">(DE-588)4331960-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0595-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846538</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042411045 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781461205951 9781461268314 |
issn | 0938-037X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846538 |
oclc_num | 863682204 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XV, 229 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Contemporary Physics |
spelling | Zagoskin, Alexandre M. Verfasser aut Quantum Theory of Many-Body Systems Techniques and Applications by Alexandre M. Zagoskin New York, NY Springer New York 1998 1 Online-Ressource (XV, 229 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Contemporary Physics 0938-037X Intended for graduate students in physics and related fields, this text is a self contained treatment of the physics of many-body systems from the point of view of condensed matter. The approach, quite traditionally, uses the mathematical formalism of quasiparticles and Green's functions. In particular, it covers all the important diagram techniques for normal and superconducting systems, including the zero- temperature perturbation theory, and the Matsubara, Keldysh, and Nambu -Gor'kov formalisms. The aim is not to be exhaustive, but to present just enough detail to enable the student to follow the current research literature or to apply the techniques to new problems. Many of the examples are drawn from mesoscopic physics, which deals with systems small enough that quantum coherence is maintained throughout their volume, and which therefore provides an ideal testing ground for many-body theories. The book begins by introducing the Green's function for one-particle systems (using Feynman path integrals), general perturbation theory, and second quantization. It then turns to the usual zero-temperature formalism, discussing the properties and physical meaning of the Green's function for many-body systems and then developing the diagram techniques of perturbation theory. The theory is extended to finite temperatures, including a discussion of the Matsubara formalism as well as the Keldysh technique for essentially nonequilibrium systems. The final chapter is devoted to applications of the techniques to superconductivity, incuding discussions of the superconducting phase transition, elementary excitations, transport, Andreev reflections, and Josephson junctions. Problems at the end of each chapter help to guide learning an to Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Vielkörperproblem (DE-588)4078900-7 gnd rswk-swf Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Vielteilchentheorie (DE-588)4331960-9 gnd rswk-swf Green-Funktion (DE-588)4158123-4 gnd rswk-swf Quasiteilchen (DE-588)4140168-2 gnd rswk-swf Quantenmechanik (DE-588)4047989-4 gnd rswk-swf Vielkörperproblem (DE-588)4078900-7 s Quantenmechanisches System (DE-588)4300046-0 s Quasiteilchen (DE-588)4140168-2 s Green-Funktion (DE-588)4158123-4 s 1\p DE-604 Quantenmechanik (DE-588)4047989-4 s 2\p DE-604 Vielteilchentheorie (DE-588)4331960-9 s 3\p DE-604 https://doi.org/10.1007/978-1-4612-0595-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zagoskin, Alexandre M. Quantum Theory of Many-Body Systems Techniques and Applications Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Vielkörperproblem (DE-588)4078900-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Vielteilchentheorie (DE-588)4331960-9 gnd Green-Funktion (DE-588)4158123-4 gnd Quasiteilchen (DE-588)4140168-2 gnd Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4078900-7 (DE-588)4300046-0 (DE-588)4331960-9 (DE-588)4158123-4 (DE-588)4140168-2 (DE-588)4047989-4 |
title | Quantum Theory of Many-Body Systems Techniques and Applications |
title_auth | Quantum Theory of Many-Body Systems Techniques and Applications |
title_exact_search | Quantum Theory of Many-Body Systems Techniques and Applications |
title_full | Quantum Theory of Many-Body Systems Techniques and Applications by Alexandre M. Zagoskin |
title_fullStr | Quantum Theory of Many-Body Systems Techniques and Applications by Alexandre M. Zagoskin |
title_full_unstemmed | Quantum Theory of Many-Body Systems Techniques and Applications by Alexandre M. Zagoskin |
title_short | Quantum Theory of Many-Body Systems |
title_sort | quantum theory of many body systems techniques and applications |
title_sub | Techniques and Applications |
topic | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Vielkörperproblem (DE-588)4078900-7 gnd Quantenmechanisches System (DE-588)4300046-0 gnd Vielteilchentheorie (DE-588)4331960-9 gnd Green-Funktion (DE-588)4158123-4 gnd Quasiteilchen (DE-588)4140168-2 gnd Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Physics Quantum theory Quantum Physics Quantum Information Technology, Spintronics Quantentheorie Vielkörperproblem Quantenmechanisches System Vielteilchentheorie Green-Funktion Quasiteilchen Quantenmechanik |
url | https://doi.org/10.1007/978-1-4612-0595-1 |
work_keys_str_mv | AT zagoskinalexandrem quantumtheoryofmanybodysystemstechniquesandapplications |