Polytropes: Applications in Astrophysics and Related Fields
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2004
|
Schriftenreihe: | Astrophysics and Space Science Library
306 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | While it seems possible to present a fairly complete uni?ed theory of undistorted polytropes, as attempted in the previous chapter, the theory of distorted polytropes is much more extended and - phisticated, so that I present merely a brief overview of the theories that seem to me most interesting and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semia- lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less accurate numerical methods. Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a unique solution to the problem of hydrostatic equilibrium for a ?uid mass at rest in tridimensional space. The problem complicates enormously if the sphere is rotating rigidly or di?erentially in space round an axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating ?uid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978, p. 222). The sphere becomes an oblate ?gure, and we have no a priori knowledge of its strati?cation, boundary shape, planes of symmetry, transfer of angular momentum in di?erentially rotating bodies, etc |
Beschreibung: | 1 Online-Ressource (VIII, 724 p) |
ISBN: | 9781402023514 9781402023507 |
DOI: | 10.1007/1-4020-2351-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042410930 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781402023514 |c Online |9 978-1-4020-2351-4 | ||
020 | |a 9781402023507 |c Print |9 978-1-4020-2350-7 | ||
024 | 7 | |a 10.1007/1-4020-2351-0 |2 doi | |
035 | |a (OCoLC)905372392 | ||
035 | |a (DE-599)BVBBV042410930 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 520 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Horedt, G. P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Polytropes |b Applications in Astrophysics and Related Fields |c by G. P. Horedt |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2004 | |
300 | |a 1 Online-Ressource (VIII, 724 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Astrophysics and Space Science Library |v 306 | |
500 | |a While it seems possible to present a fairly complete uni?ed theory of undistorted polytropes, as attempted in the previous chapter, the theory of distorted polytropes is much more extended and - phisticated, so that I present merely a brief overview of the theories that seem to me most interesting and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semia- lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less accurate numerical methods. Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a unique solution to the problem of hydrostatic equilibrium for a ?uid mass at rest in tridimensional space. The problem complicates enormously if the sphere is rotating rigidly or di?erentially in space round an axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating ?uid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978, p. 222). The sphere becomes an oblate ?gure, and we have no a priori knowledge of its strati?cation, boundary shape, planes of symmetry, transfer of angular momentum in di?erentially rotating bodies, etc | ||
650 | 4 | |a Physics | |
650 | 4 | |a Chemistry, Physical organic | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Astronomy | |
650 | 4 | |a Astrophysics | |
650 | 4 | |a Mathematical and Computational Physics | |
650 | 4 | |a Physical Chemistry | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Polytroper Prozess |0 (DE-588)7660027-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Astrophysik |0 (DE-588)4003326-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polytroper Prozess |0 (DE-588)7660027-0 |D s |
689 | 0 | 1 | |a Astrophysik |0 (DE-588)4003326-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/1-4020-2351-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846423 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071703425024 |
---|---|
any_adam_object | |
author | Horedt, G. P. |
author_facet | Horedt, G. P. |
author_role | aut |
author_sort | Horedt, G. P. |
author_variant | g p h gp gph |
building | Verbundindex |
bvnumber | BV042410930 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905372392 (DE-599)BVBBV042410930 |
dewey-full | 520 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 520 - Astronomy and allied sciences |
dewey-raw | 520 |
dewey-search | 520 |
dewey-sort | 3520 |
dewey-tens | 520 - Astronomy and allied sciences |
discipline | Physik |
doi_str_mv | 10.1007/1-4020-2351-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03137nmm a2200529zcb4500</leader><controlfield tag="001">BV042410930</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402023514</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4020-2351-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402023507</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-2350-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/1-4020-2351-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905372392</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042410930</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">520</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Horedt, G. P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Polytropes</subfield><subfield code="b">Applications in Astrophysics and Related Fields</subfield><subfield code="c">by G. P. Horedt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 724 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Astrophysics and Space Science Library</subfield><subfield code="v">306</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">While it seems possible to present a fairly complete uni?ed theory of undistorted polytropes, as attempted in the previous chapter, the theory of distorted polytropes is much more extended and - phisticated, so that I present merely a brief overview of the theories that seem to me most interesting and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semia- lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less accurate numerical methods. Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a unique solution to the problem of hydrostatic equilibrium for a ?uid mass at rest in tridimensional space. The problem complicates enormously if the sphere is rotating rigidly or di?erentially in space round an axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating ?uid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978, p. 222). The sphere becomes an oblate ?gure, and we have no a priori knowledge of its strati?cation, boundary shape, planes of symmetry, transfer of angular momentum in di?erentially rotating bodies, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Physical organic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astronomy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Astrophysics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polytroper Prozess</subfield><subfield code="0">(DE-588)7660027-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Astrophysik</subfield><subfield code="0">(DE-588)4003326-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polytroper Prozess</subfield><subfield code="0">(DE-588)7660027-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Astrophysik</subfield><subfield code="0">(DE-588)4003326-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/1-4020-2351-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846423</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042410930 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9781402023514 9781402023507 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846423 |
oclc_num | 905372392 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (VIII, 724 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Astrophysics and Space Science Library |
spelling | Horedt, G. P. Verfasser aut Polytropes Applications in Astrophysics and Related Fields by G. P. Horedt Dordrecht Springer Netherlands 2004 1 Online-Ressource (VIII, 724 p) txt rdacontent c rdamedia cr rdacarrier Astrophysics and Space Science Library 306 While it seems possible to present a fairly complete uni?ed theory of undistorted polytropes, as attempted in the previous chapter, the theory of distorted polytropes is much more extended and - phisticated, so that I present merely a brief overview of the theories that seem to me most interesting and important. Basically, the methods proposed to study the hydrostatic equilibrium of a distorted self-gravitating mass can be divided into two major groups (Blinnikov 1975): (i) Analytic or semia- lytic methods using a small parameter connected with the distortion of the polytrope. (ii) More or less accurate numerical methods. Lyapunov and later Carleman (see Jardetzky 1958, p. 13) have demonstrated that a sphere is a unique solution to the problem of hydrostatic equilibrium for a ?uid mass at rest in tridimensional space. The problem complicates enormously if the sphere is rotating rigidly or di?erentially in space round an axis, and/or if it is distorted magnetically or tidally. Even for the simplest case of a uniformly rotating ?uid body with constant density not all possible solutions have been found (Zharkov and Trubitsyn 1978, p. 222). The sphere becomes an oblate ?gure, and we have no a priori knowledge of its strati?cation, boundary shape, planes of symmetry, transfer of angular momentum in di?erentially rotating bodies, etc Physics Chemistry, Physical organic Mathematical physics Astronomy Astrophysics Mathematical and Computational Physics Physical Chemistry Mathematische Physik Polytroper Prozess (DE-588)7660027-0 gnd rswk-swf Astrophysik (DE-588)4003326-0 gnd rswk-swf Polytroper Prozess (DE-588)7660027-0 s Astrophysik (DE-588)4003326-0 s 1\p DE-604 https://doi.org/10.1007/1-4020-2351-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Horedt, G. P. Polytropes Applications in Astrophysics and Related Fields Physics Chemistry, Physical organic Mathematical physics Astronomy Astrophysics Mathematical and Computational Physics Physical Chemistry Mathematische Physik Polytroper Prozess (DE-588)7660027-0 gnd Astrophysik (DE-588)4003326-0 gnd |
subject_GND | (DE-588)7660027-0 (DE-588)4003326-0 |
title | Polytropes Applications in Astrophysics and Related Fields |
title_auth | Polytropes Applications in Astrophysics and Related Fields |
title_exact_search | Polytropes Applications in Astrophysics and Related Fields |
title_full | Polytropes Applications in Astrophysics and Related Fields by G. P. Horedt |
title_fullStr | Polytropes Applications in Astrophysics and Related Fields by G. P. Horedt |
title_full_unstemmed | Polytropes Applications in Astrophysics and Related Fields by G. P. Horedt |
title_short | Polytropes |
title_sort | polytropes applications in astrophysics and related fields |
title_sub | Applications in Astrophysics and Related Fields |
topic | Physics Chemistry, Physical organic Mathematical physics Astronomy Astrophysics Mathematical and Computational Physics Physical Chemistry Mathematische Physik Polytroper Prozess (DE-588)7660027-0 gnd Astrophysik (DE-588)4003326-0 gnd |
topic_facet | Physics Chemistry, Physical organic Mathematical physics Astronomy Astrophysics Mathematical and Computational Physics Physical Chemistry Mathematische Physik Polytroper Prozess Astrophysik |
url | https://doi.org/10.1007/1-4020-2351-0 |
work_keys_str_mv | AT horedtgp polytropesapplicationsinastrophysicsandrelatedfields |