Theory of Nonlinear Acoustics in Fluids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Fluid Mechanics and Its Applications
67 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers’ equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers’ equation, travelling wave solutions of Bu- ers’ equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation |
Beschreibung: | 1 Online-Ressource (XIII, 282 p) |
ISBN: | 9780306484193 9781402005725 |
ISSN: | 0926-5112 |
DOI: | 10.1007/0-306-48419-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042410856 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780306484193 |c Online |9 978-0-306-48419-3 | ||
020 | |a 9781402005725 |c Print |9 978-1-4020-0572-5 | ||
024 | 7 | |a 10.1007/0-306-48419-6 |2 doi | |
035 | |a (OCoLC)905463893 | ||
035 | |a (DE-599)BVBBV042410856 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 534 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Enflo, Bengt O. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theory of Nonlinear Acoustics in Fluids |c by Bengt O. Enflo, Claes M. Hedberg |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XIII, 282 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fluid Mechanics and Its Applications |v 67 |x 0926-5112 | |
500 | |a The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers’ equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers’ equation, travelling wave solutions of Bu- ers’ equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation | ||
650 | 4 | |a Physics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Acoustics | |
650 | 4 | |a Vibration | |
650 | 4 | |a Vibration, Dynamical Systems, Control | |
650 | 4 | |a Mechanics, Fluids, Thermodynamics | |
650 | 4 | |a Partial Differential Equations | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Flüssigkeit |0 (DE-588)4017621-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Akustik |0 (DE-588)4171746-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Akustik |0 (DE-588)4171746-6 |D s |
689 | 0 | 1 | |a Flüssigkeit |0 (DE-588)4017621-6 |D s |
689 | 0 | 2 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 1 | 1 | |a Nichtlineare Akustik |0 (DE-588)4171746-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hedberg, Claes M. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/0-306-48419-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846349 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071519924224 |
---|---|
any_adam_object | |
author | Enflo, Bengt O. |
author_facet | Enflo, Bengt O. |
author_role | aut |
author_sort | Enflo, Bengt O. |
author_variant | b o e bo boe |
building | Verbundindex |
bvnumber | BV042410856 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905463893 (DE-599)BVBBV042410856 |
dewey-full | 534 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 534 - Sound and related vibrations |
dewey-raw | 534 |
dewey-search | 534 |
dewey-sort | 3534 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/0-306-48419-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03929nmm a2200637zcb4500</leader><controlfield tag="001">BV042410856</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306484193</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-306-48419-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402005725</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-0572-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/0-306-48419-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905463893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042410856</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">534</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Enflo, Bengt O.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of Nonlinear Acoustics in Fluids</subfield><subfield code="c">by Bengt O. Enflo, Claes M. Hedberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 282 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fluid Mechanics and Its Applications</subfield><subfield code="v">67</subfield><subfield code="x">0926-5112</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers’ equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers’ equation, travelling wave solutions of Bu- ers’ equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acoustics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Fluids, Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Flüssigkeit</subfield><subfield code="0">(DE-588)4017621-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Akustik</subfield><subfield code="0">(DE-588)4171746-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Akustik</subfield><subfield code="0">(DE-588)4171746-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Flüssigkeit</subfield><subfield code="0">(DE-588)4017621-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Akustik</subfield><subfield code="0">(DE-588)4171746-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hedberg, Claes M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/0-306-48419-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846349</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042410856 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9780306484193 9781402005725 |
issn | 0926-5112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846349 |
oclc_num | 905463893 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XIII, 282 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fluid Mechanics and Its Applications |
spelling | Enflo, Bengt O. Verfasser aut Theory of Nonlinear Acoustics in Fluids by Bengt O. Enflo, Claes M. Hedberg Dordrecht Springer Netherlands 2002 1 Online-Ressource (XIII, 282 p) txt rdacontent c rdamedia cr rdacarrier Fluid Mechanics and Its Applications 67 0926-5112 The aim of the present book is to present theoretical nonlinear aco- tics with equal stress on physical and mathematical foundations. We have attempted explicit and detailed accounting for the physical p- nomena treated in the book, as well as their modelling, and the f- mulation and solution of the mathematical models. The nonlinear acoustic phenomena described in the book are chosen to give phy- cally interesting illustrations of the mathematical theory. As active researchers in the mathematical theory of nonlinear acoustics we have found that there is a need for a coherent account of this theory from a unified point of view, covering both the phenomena studied and mathematical techniques developed in the last few decades. The most ambitious existing book on the subject of theoretical nonlinear acoustics is "Theoretical Foundations of Nonlinear Aco- tics" by O. V. Rudenko and S. I. Soluyan (Plenum, New York, 1977). This book contains a variety of applications mainly described by Bu- ers’ equation or its generalizations. Still adhering to the subject - scribed in the title of the book of Rudenko and Soluyan, we attempt to include applications and techniques developed after the appearance of, or not included in, this book. Examples of such applications are resonators, shockwaves from supersonic projectiles and travelling of multifrequency waves. Examples of such techniques are derivation of exact solutions of Burgers’ equation, travelling wave solutions of Bu- ers’ equation in non-planar geometries and analytical techniques for the nonlinear acoustic beam (KZK) equation Physics Differential equations, partial Thermodynamics Mechanics Acoustics Vibration Vibration, Dynamical Systems, Control Mechanics, Fluids, Thermodynamics Partial Differential Equations Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Flüssigkeit (DE-588)4017621-6 gnd rswk-swf Nichtlineare Akustik (DE-588)4171746-6 gnd rswk-swf Nichtlineare Akustik (DE-588)4171746-6 s Flüssigkeit (DE-588)4017621-6 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 Strömungsmechanik (DE-588)4077970-1 s 2\p DE-604 Hedberg, Claes M. Sonstige oth https://doi.org/10.1007/0-306-48419-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Enflo, Bengt O. Theory of Nonlinear Acoustics in Fluids Physics Differential equations, partial Thermodynamics Mechanics Acoustics Vibration Vibration, Dynamical Systems, Control Mechanics, Fluids, Thermodynamics Partial Differential Equations Mathematische Physik (DE-588)4037952-8 gnd Strömungsmechanik (DE-588)4077970-1 gnd Flüssigkeit (DE-588)4017621-6 gnd Nichtlineare Akustik (DE-588)4171746-6 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4077970-1 (DE-588)4017621-6 (DE-588)4171746-6 |
title | Theory of Nonlinear Acoustics in Fluids |
title_auth | Theory of Nonlinear Acoustics in Fluids |
title_exact_search | Theory of Nonlinear Acoustics in Fluids |
title_full | Theory of Nonlinear Acoustics in Fluids by Bengt O. Enflo, Claes M. Hedberg |
title_fullStr | Theory of Nonlinear Acoustics in Fluids by Bengt O. Enflo, Claes M. Hedberg |
title_full_unstemmed | Theory of Nonlinear Acoustics in Fluids by Bengt O. Enflo, Claes M. Hedberg |
title_short | Theory of Nonlinear Acoustics in Fluids |
title_sort | theory of nonlinear acoustics in fluids |
topic | Physics Differential equations, partial Thermodynamics Mechanics Acoustics Vibration Vibration, Dynamical Systems, Control Mechanics, Fluids, Thermodynamics Partial Differential Equations Mathematische Physik (DE-588)4037952-8 gnd Strömungsmechanik (DE-588)4077970-1 gnd Flüssigkeit (DE-588)4017621-6 gnd Nichtlineare Akustik (DE-588)4171746-6 gnd |
topic_facet | Physics Differential equations, partial Thermodynamics Mechanics Acoustics Vibration Vibration, Dynamical Systems, Control Mechanics, Fluids, Thermodynamics Partial Differential Equations Mathematische Physik Strömungsmechanik Flüssigkeit Nichtlineare Akustik |
url | https://doi.org/10.1007/0-306-48419-6 |
work_keys_str_mv | AT enflobengto theoryofnonlinearacousticsinfluids AT hedbergclaesm theoryofnonlinearacousticsinfluids |