Asymptotic Modelling of Fluid Flow Phenomena:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
2002
|
Schriftenreihe: | Fluid Mechanics and Its Applications
64 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful |
Beschreibung: | 1 Online-Ressource (XVIII, 550 p) |
ISBN: | 9780306483868 9781402004322 |
ISSN: | 0926-5112 |
DOI: | 10.1007/0-306-48386-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042410851 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150316s2002 |||| o||u| ||||||eng d | ||
020 | |a 9780306483868 |c Online |9 978-0-306-48386-8 | ||
020 | |a 9781402004322 |c Print |9 978-1-4020-0432-2 | ||
024 | 7 | |a 10.1007/0-306-48386-6 |2 doi | |
035 | |a (OCoLC)905488020 | ||
035 | |a (DE-599)BVBBV042410851 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-83 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a PHY 000 |2 stub | ||
100 | 1 | |a Zeytounian, Radyadour Kh |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Modelling of Fluid Flow Phenomena |c by Radyadour Kh. Zeytounian |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 2002 | |
300 | |a 1 Online-Ressource (XVIII, 550 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Fluid Mechanics and Its Applications |v 64 |x 0926-5112 | |
500 | |a for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful | ||
650 | 4 | |a Physics | |
650 | 4 | |a Thermodynamics | |
650 | 4 | |a Mechanics | |
650 | 4 | |a Fluids | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Physical geography | |
650 | 4 | |a Mechanics, Fluids, Thermodynamics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Environmental Physics | |
650 | 0 | 7 | |a Strömung |0 (DE-588)4058076-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömung |0 (DE-588)4058076-3 |D s |
689 | 0 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/0-306-48386-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-PHA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-PHA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027846344 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153071515729920 |
---|---|
any_adam_object | |
author | Zeytounian, Radyadour Kh |
author_facet | Zeytounian, Radyadour Kh |
author_role | aut |
author_sort | Zeytounian, Radyadour Kh |
author_variant | r k z rk rkz |
building | Verbundindex |
bvnumber | BV042410851 |
classification_tum | PHY 000 |
collection | ZDB-2-PHA ZDB-2-BAE |
ctrlnum | (OCoLC)905488020 (DE-599)BVBBV042410851 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik |
doi_str_mv | 10.1007/0-306-48386-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03144nmm a2200541zcb4500</leader><controlfield tag="001">BV042410851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150316s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306483868</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-306-48386-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402004322</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4020-0432-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/0-306-48386-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905488020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042410851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeytounian, Radyadour Kh</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Modelling of Fluid Flow Phenomena</subfield><subfield code="c">by Radyadour Kh. Zeytounian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 550 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fluid Mechanics and Its Applications</subfield><subfield code="v">64</subfield><subfield code="x">0926-5112</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physical geography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics, Fluids, Thermodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömung</subfield><subfield code="0">(DE-588)4058076-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömung</subfield><subfield code="0">(DE-588)4058076-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/0-306-48386-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-PHA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-PHA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027846344</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042410851 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:20:47Z |
institution | BVB |
isbn | 9780306483868 9781402004322 |
issn | 0926-5112 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027846344 |
oclc_num | 905488020 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (XVIII, 550 p) |
psigel | ZDB-2-PHA ZDB-2-BAE ZDB-2-PHA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Fluid Mechanics and Its Applications |
spelling | Zeytounian, Radyadour Kh Verfasser aut Asymptotic Modelling of Fluid Flow Phenomena by Radyadour Kh. Zeytounian Dordrecht Springer Netherlands 2002 1 Online-Ressource (XVIII, 550 p) txt rdacontent c rdamedia cr rdacarrier Fluid Mechanics and Its Applications 64 0926-5112 for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful Physics Thermodynamics Mechanics Fluids Engineering mathematics Physical geography Mechanics, Fluids, Thermodynamics Appl.Mathematics/Computational Methods of Engineering Environmental Physics Strömung (DE-588)4058076-3 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Strömung (DE-588)4058076-3 s Asymptotische Methode (DE-588)4287476-2 s 1\p DE-604 https://doi.org/10.1007/0-306-48386-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zeytounian, Radyadour Kh Asymptotic Modelling of Fluid Flow Phenomena Physics Thermodynamics Mechanics Fluids Engineering mathematics Physical geography Mechanics, Fluids, Thermodynamics Appl.Mathematics/Computational Methods of Engineering Environmental Physics Strömung (DE-588)4058076-3 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
subject_GND | (DE-588)4058076-3 (DE-588)4287476-2 |
title | Asymptotic Modelling of Fluid Flow Phenomena |
title_auth | Asymptotic Modelling of Fluid Flow Phenomena |
title_exact_search | Asymptotic Modelling of Fluid Flow Phenomena |
title_full | Asymptotic Modelling of Fluid Flow Phenomena by Radyadour Kh. Zeytounian |
title_fullStr | Asymptotic Modelling of Fluid Flow Phenomena by Radyadour Kh. Zeytounian |
title_full_unstemmed | Asymptotic Modelling of Fluid Flow Phenomena by Radyadour Kh. Zeytounian |
title_short | Asymptotic Modelling of Fluid Flow Phenomena |
title_sort | asymptotic modelling of fluid flow phenomena |
topic | Physics Thermodynamics Mechanics Fluids Engineering mathematics Physical geography Mechanics, Fluids, Thermodynamics Appl.Mathematics/Computational Methods of Engineering Environmental Physics Strömung (DE-588)4058076-3 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
topic_facet | Physics Thermodynamics Mechanics Fluids Engineering mathematics Physical geography Mechanics, Fluids, Thermodynamics Appl.Mathematics/Computational Methods of Engineering Environmental Physics Strömung Asymptotische Methode |
url | https://doi.org/10.1007/0-306-48386-6 |
work_keys_str_mv | AT zeytounianradyadourkh asymptoticmodellingoffluidflowphenomena |