Sharing data and models in software engineering:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Morgan Kaufmann/Elsevier
2015
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 378 S. Illustrationen, Diagramme |
ISBN: | 9780124172951 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV042363227 | ||
003 | DE-604 | ||
005 | 20190730 | ||
007 | t | ||
008 | 150216s2015 a||| |||| 00||| eng d | ||
020 | |a 9780124172951 |9 978-0-12-417295-1 | ||
035 | |a (OCoLC)906700665 | ||
035 | |a (DE-599)GBV81521071X | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-384 |a DE-739 | ||
084 | |a ST 230 |0 (DE-625)143617: |2 rvk | ||
245 | 1 | 0 | |a Sharing data and models in software engineering |c Tim Menzies ... |
264 | 1 | |a Amsterdam [u.a.] |b Morgan Kaufmann/Elsevier |c 2015 | |
300 | |a XXVII, 378 S. |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Software Engineering |0 (DE-588)4116521-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verteiltes System |0 (DE-588)4238872-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Software Engineering |0 (DE-588)4116521-4 |D s |
689 | 0 | 1 | |a Verteiltes System |0 (DE-588)4238872-7 |D s |
689 | 0 | 2 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Menzies, Tim |e Sonstige |0 (DE-588)17331967X |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bamberg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-027799636 |
Datensatz im Suchindex
_version_ | 1804152995486629888 |
---|---|
adam_text | Contents
í
»
»ι
Ы
heures
........................................................................................... xix
CHAPTER
1
Introduction
........................................................................
ι
1.1
Why Read This Book?
............................................................... 1
1.2
What Do We Mean by Sharing ?
................................................... 1
1.2.1
Sharing Insights
.............................................................. 2
1.2.2
Sharing Models
.............................................................. 2
1.2.3
Sharing Data
................................................................. 3
1
.2.4
Sharing Analysis Methods
.................................................. 3
1
.2.5
Types of Sharing
............................................................. 3
1
.2.6
Challenges with Sharing
.................................................... 4
1.2.7
How to Share
................................................................. 5
1.3
What? (Our Executive Summary)
.................................................... 7
1.3.
1 An Overview
................................................................. 7
1.3.2
More Details
.................................................................
Η
1.4
How to Read This Book
.............................................................. 9
1
.4.
1 Data Analysis Patterns
...................................................... 10
1.5
Bui What About
...?
(What Is Not in This Book)
.................................. 10
1.5.1
What About Big Data ?
................................................... 10
1.5.2
What About Related Work?
................................................. 11
1.5.3
Why All the Defect Prediction and Effort
Estimation?
..................................................................
II
1.6
Who? (About the Authors)
........................................................... 12
1.7
Who Else? (Acknowledgments)
..................................................... 13
PARTI DATA MINING FOR MANAGERS
_____________________________
CHAPTER
2
Rules for Managers
.............................................................. 17
2.1
The Inductive Engineering Manifesto
............................................... 17
22
More Rules
............................................................................ 18
CHAPTERS Rule
#1:
Talk to the Users
..................................................... 19
3.1
UscrsBiases
.......................................................................... 19
32
Data Mining Biases
................................................................... 20
3.3
Can We Avoid Bias?
.................................................................. 22
3.4
Managing Biases
...................................................................... 22
3.5
Summary
.............................................................................. 23
ix
CONTENTS
CHAPTER
4
Rule
#2:
Know the
Domain
2S
4.1
Cautionary Talc
#
I
:
- Discovering Random Noise
.................................
њ
4.2
Cautionary Tale
#2:
Jumping
al
Shadows
...........................................
27
4.3
Cautionary Talc
#3:
It Pays to Ask
..................................................
27
4.4
Summary
..............................................................................
CHAPTER
5
Rule
#3:
Suspect Your Oata 29
5.1
Controlling Data Collection
..........................................................
29
5.2
Problems with Controlled Data Collection
..........................................
29
5.3
Rinse (and Prune) Before Use
.......................................................
30
5.3.1
Row Pruning
.................................................................
30
5.3.2
Column Pruning
............................................................. 30
5.4
On the Value of Pruning
.............................................................. 31
5.5
Summary
.............................................................................. 34
CHAPTER
6
Rule
#4:
Data Science Is Cyclic
............................................. 35
6.1
The Knowledge Discovery Cycle
.................................................... 35
6.2
Evolving Cyclic Development
....................................................... 37
6.2.1
Scouting
...................................................................... 37
6.2.2
Surveying
.................................................................... 38
6.2.3
Building
...................................................................... 38
6.2.4
Effort
......................................................................... 38
6.3
Summary
.............................................................................. 38
PART
И
DATA MINING; A TECHNICAL TUTORIAL
_____________________
CHAPTER
7
Oata Mining and
SE
..............................................................
4i
7.1
Some Definitions
..................................................................... 41
7»2 Some Application Areas
............................................................. 41
CHAPTER
8
Defect Prediction
................................................................. 43
Є.1
Defect Detection Economics
...................................................... 43
82
Static Code Defect Prediction
........................................................ 45
8.2.
1 Easy Co Use
................................................ 45
8.2.2
Widely Used
......................................
і!!. . !. . . . . !. !.
......... 45
8.2.3
Useful
..........................................
i . ..!! !.....!..!......!
45
CHAPTERS Effort Estimation
..................................................................
47
8.1
The Estimation Problem
..................................... 47
Ä2
How
10
Make Estimates
..........................................
4g
9.2.1
Expert-Based Estimation
.....................................
4g
9.2.2
Model-Based Estimation
.................................. 49
9.23
Hybrid Methods
...........................
50
CONTENTS xi
CHAPTER
10 Data Mining
(Under the Hood)
................................................
si
10.1
Data Carving
.......................................................................... 51
10.2
About
lhe
Data
........................................................................ 52
10.3
Cohen Pruning
........................................................................ 53
10.4
Discretization
......................................................................... 55
10.4.1 (
)ther Discretization Methods
............................................... 55
10.5
Column Pruning
...................................................................... 56
10.6
Row Pruning
.......................................................................... 57
10.7
Cluster Pruning
....................................................................... 58
10.7.1
Advantages of Prototypes
................................................... 60
1
0.7.2
Advantages of Clustering
................................................... 61
10.8
Contrast Pruning
...................................................................... 62
10.9
Goal Pruning
.......................................................................... 64
10.10
Extensions for Continuous Classes
.................................................. 67
10.10.1
How RTs Work
.............................................................. 67
10.
1
0.2
Creating Splits for Categorical Input Features
............................. 68
10.10.3
Splits on Numeric Input Features
........................................... 71
10.
1
0.4
Termination Condition and Predictions
..................................... 74
10.10.5
Potential Advantages of RTs for Software Effort Estimation
............. 74
10.10.6
Predictions for Multiple Numeric Goals
.................................... 75
PARTIU
SHARING DATA
__________________________________________
CHAPTER
11
Sharing Data: Challenges and Methods
.................................... 79
11.1
Houston, We Have a Problem
........................................................ 79
11.2
(кнкі
News, Everyone
................................................................ 80
CHAPTER
12
Learning Contexts
................................................................ 83
12.1
Background
........................................................................... 84
12.2
Manual Methods for Contextualization
.............................................. 84
12.3
Automatic Methods
................................................................... 87
12.4 (
)ther Motivation to
lind
Contexts
.................................................. 88
12.4.1
Variance Reduction
.......................................................... 88
1
2.4.2
Anomaly Detection
.......................................................... 88
1
2.4.3
Certification Envelopes
...................................................... 89
1
2.4.4
Incremental learning
........................................................ 89
1
2.4.5
Compression
................................................................. 89
1
2.4.6 (
)ptimi/ation
................................................................. 89
12.5
How to Find Local Regions
.......................................................... 90
12.5.1
License
....................................................................... 90
12.5.2
Installing CHUNK
........................................................... 90
xü CONTENTS
12.5.3
Testing Your Installation
....................................................
90
12.5.4
Applying CHUNK to Other Models
........................................
92
12.6
insideCHUNK
.......................................................................
93
12.6.1
Roadmap to Functions
.......................................................
^
12.6.2
Distance Calculations
.......................................................
93
12.6.3
Dividing the Data
............................................................
94
12.6.4
Support Utilities
.............................................................
96
12.7
Putting It all Together
................................................................
98
12.7.1
_nasa93
.......................................................................
98
12.8
Using CHUNK
........................................................................
12.9
Closing Remarks
......................................................................
10°
CHAPTER
13
Cross-Company Learning: Handling the Data Drought
ιοί
13.1
Motivation
.............................................................................
1°2
13.2
Setting the Ground for Analyses
..................................................... 103
13.2.1
Wail... Is This Really CC Data?
...........................................105
13.2.2
Mining the Data
.............................................................. 105
13.2.3
Magic Trick:
NN
Relevancy Filtering
......................................106
13.3
Analysis
#1 :
Can CC Data be Useful for an Organization?
........................107
13.3.1
Design
........................................................................ 107
13.3.2
Results from Analysis
#1.................................................... 108
13.3.3
Checking the Analysis
#1
Results
.......................................... 109
1
3.3.4
Discussion of Analysis
#1...................................................109
13.4
Analysis
#2:
How to Cleanup CC Data for Local Tuning?
.........................
Ill
13.4.1
Design
........................................................................
Ill
13.4.2
Results
........................................................................
Ill
1
3.4.3
Discussions
.................................................................. 114
13.5
Analysis
#3:
How Much Local Data Does an Organization Need
for a Local Model?
...................................................................
П4
13.5.1
Design
........................................................................ 114
1
3.5.2
Results from Analysis
#3.................................................... 115
13.5.3
Checking the Analysis
#3
Results
..........................................116
1
3.5.4
Discussion of Analysis
#3................................................. 116
13.6
How Trustworthy Are These Results?
..................................
И7
13.7
Arc These Useful in Practice or Just Number Crunching?
......................... 119
13.8
What s New on Cross-Learning?
.....................................
1
20
13.8.1
Discussion
.................................................
I23
13.9
Whaťsíhe
Takeaway?
.............................................
124
CHAPTER
14
Building Smarter Transfer Learners
.........................................
125
14.1
Whal Is Actually the Problem?
............................... 126
14.2
What Do We Know So Far?
..........................]] ·
CONTENTS xiii
14.2.1 Transfer
Learning
............................................................ 128
14.2.2 Transfer
Learning
and SK
................................................... 128
14.2.3
Data Sel
Shift
................................................................ 130
14.3
An Example Technology: THAK
.................................................... 131
14.4
The Details of the
Experiments......................................................
1
35
14.4.
1 Performance Comparison
...................................................
1
35
14.4.2
Performance Measures
......................................................
1
35
14.4.3
Retrieval Tendency
.......................................................... 137
14.5
Results
................................................................................. 137
14.5.1
Performance Comparison
................................................... 137
14.5.2
Inspecting Selection Tendencies
............................................ 142
14.6
Discussion
.............................................................................
1
45
14.7
What Are the Takeaways?
............................................................ 146
CHAPTER
15
Sharing Less Data (Is a Good Thing)
........................................147
15.1
Can We Share Less Data?
............................................................ 148
15.2
Using Less Data
...................................................................... 151
15.3
Why Share Less Data?
............................................................... 156
15.3.1
Less Data Is More Reliable
................................................. 156
15.3.2
Less Data Is Faster to Discuss
.............................................. 156
1
5.3.3
Less Data Is Hasier to Process
..............................................
1
57
15.4
How to Find Less Data
............................................................... 158
15.4.1
Input
.......................................................................... 159
1
5.4.2
Comparisons to Other learners
............................................. 162
15.4.3
Reporting the Results
........................................................
1
62
1
5.4.4
Discussion of Results
........................................................
1
63
15.5
What s Next?
.......................................................................... 164
CHAPTER
16
How to Keep Your Data Private
...............................................165
16.1
Motivation
............................................................................. 166
16.2
What Is PPDP and Why Is It Important?
............................................ 166
16.3
What Is Considered a Breach of Privacy?
........................................... 168
16.4
How to Avoid Privacy Breaches?
.................................................... 169
1
6.4.
1 Generalization and Suppression
............................................
1
69
1
6.4.2
Anatomization and Permutation
............................................ 171
16.4.3
Perturbalion
.................................................................. 171
1
6.4.4 (
)utput Perturbalion
.......................................................... 171
16.5
How Are Privacy-Preserving Algorithms Hvalualed?
............................... 172
16.5.1
Privacy Metrics
.............................................................. 172
1
6.5.2
Modeling the Background Knowledge of an Attacker
..................... 173
χ*
CONTENTS
16.6
Casc Siudy
:
Privacy and Cross-Company Defect Prediction
....................... 174
16.6.1
Results and Contributions
...................................................
177
16.6.2
Privacy and CCDP
...........................................................
177
16.6.3
CLIFF
........................................................................
178
16.6.4
MORPH
......................................................................
l8°
16.6.5
Example of CLIFF&MORPH
...............................................
1
6.6.6
Evaluation Metrics
........................................................... 1
8 J
16.6.7
Evaluating Utility via Classification
........................................181
16.6.8
Evaluating Privatization
.....................................................
184
16.6.9
Experiments
..................................................................
185
lõAIODcsign
........................................................................
185
16.6.11
Defect Predictors
............................................................ 185
і
6.6.
1
2
Query Generator
............................................................. 186
16.6.13
Benchmark Privacy Algorithms
............................................. 187
16.6.
1
4
Experimental Evaluation
.................................................... 188
16.6.15
Discussion
.................................................................... 194
16.6.16
Related Work: Privacy in
SE
................................................ 195
1
6.6.17
Summary
.....................................................................196
CHAPTER
17
Compensating for Missing Data
..............................................197
17.1
Background Notes on SEE and Instance Selection
................................. 199
17.1.1
Software Hffort Estimation
.................................................. 199
17.1.2
Instance Selection in SEE
................................................... 199
17.2
Data Sets and Performance Measures
...............................................200
17.2.1
Data Sets
.....................................................................200
17.2.2
Error Mcasu res
...............................................................203
17.3
Experimental Conditions
.............................................................205
17.3.1
The Algorithms Adopted
....................................................205
17.3.2
Proposed Method:
POPI
....................................................206
17.3.3
Experiments
............................................................. 208
17.4
Results
............................................................ 208
17.4.
1 Results Without Instance Selection
.........................................208
17.4.2
Results with Instance Selection
.............................................210
17.5
Summary
...................................................... 21
1
CHAPTER
18
Active Learning: Learning More with Less
................................213
18.1
How Docs the QUICK Algorithm Work?
.................................. 215
18.1.1
Getting Rid of Similar Features: Synonym Pruning
.......................215
18.1.2
Getting Rid of Dissimilar Instances: Outlier Pruning
......................216
1&2 Notes on Active Learning
......................................... 217
CONTENTS xv
18.3 The Application
and Implementation Details of QUICK
...........................218
18.3.
1 Phase I
:
Synonym Pruning
..................................................218
18.3.2
Phase
2:
Outlier Removal and Estimation
..................................219
18.3.3
Seeing QUICK in Action with a Toy Example
.............................221
18.4
How the Experiments Are Designed
.................................................225
18.5
Results
.................................................................................227
18.5.1
Performance
.................................................................. 228
18.5.2
Reduction via Synonym and Outlier Pruning
.............................. 228
18.5.3
Comparison of QUICK vs. CART
.......................................... 229
1
8.5.4
Detailed Look at the Statistical Analysis
................................... 230
18.5.5
Early Results on Defect Data Sets
..........................................230
18.6
Summary
.............................................................................. 234
PART IV SHARING MODELS
_______________________________________
CHAPTER
19
Sharing Models: Challenges and Methods
................................237
CHAPTER
20
Ensembles of Learning Machines
............................................239
20.1
When and Why Ensembles Work
....................................................240
20.1.1
Intuition
...................................................................... 241
20.1.2
Theoretical Foundation
...................................................... 24
1
20.2
Bootstrap Aggregating
(
Bagging)
....................................................243
20.2.1
How Bagging Works
........................................................ 243
20.2.2
When and Why Bagging Works
............................................ 244
20.2.3
Potential Advantages of Bagging for
Slili
.................................. 245
20.3
Regression Trees
(
RTs) for Bagging
................................................. 246
20.4
Evaluation
Framework
............................................................... 246
20.4.
1 Choice of Data Sets and Preprocessing Techniques
....................... 247
20.4.2
Choice of
1
.earning Machines
............................................... 25
1
20.4.3
Choice of Evaluation Methods
.............................................. 253
20.4.4
Choice of Parameters
........................................................ 255
20.5
Evaluation of Bagging
+
RTs in SEE
................................................255
20.5.1
Friedman Ranking
........................................................... 256
20.5.2
Approaches Most Often Ranked First or Second in
Tenns
of MAE. MMRE and PRED(25)
.................................... 258
20.5.3
Magnitude of Performance Against (he Best
............................... 260
20.5.4
Discussion
.................................................................... 261
20.6
Further Understanding of Bagging
+
RTs in
SEF.
................................... 262
20.7
Summary
.............................................................................. 264
CHAPTER
21
How to Adapt Models in a Dynamic World
................................267
21.1
Cross-Company Data and Questions Tackled
....................................... 268
21.2
Related Work
......................................................................... 270
xvi CONTENTS
2
1
.2.
1
SEH
Literature on Chronology and Changing Environments
.............270
21.2.2
Machine Learning Literature on Online Learning in
Changing Environments
.....................................................
21-3
Formulation of the Prohlem
..........................................................
ΔΙ:>
21.4
Databases
.............................................................................
274
21.4.1
ISBSG Databases
............................................................
274
21.4.2
CocNasaCocSI
..............................................................
275
21.4.3
KitchenMax
..................................................................
276
21.5
Potential Benefit of CC Data
.........................................................
277
2
1.
5.1
Experimental Setup
..........................................................
277
21.5.2
Analysis
......................................................................
278
21.6
Making Better Use of CC Data
......................................................280
21.7
Experimental Analysis
...............................................................282
21.7.
1 Experimental Setup
..........................................................283
21.7.2
Analysis
......................................................................284
21.8
Discussion and Implications
.........................................................289
21.9
Summary
..............................................................................289
CHAPTER
22
Complexity: Using Assemblies off Multiple Models
.....................291
22.1
Ensemble of Methods
................................................................293
22.2
Solo Methods and Muliimethods
....................................................294
22.2.1
Multimethods
................................................................294
22.2.2
Ninety Solo Methods
........................................................294
22.2.3
Experimental Conditions
....................................................297
22.3
Methodology
..........................................................................299
22.3.
1 Focus on Superior Methods
.................................................299
22.3.2
Bringing Superior Solo Methods into Ensembles
..........................300
22.4
Results
.................................................................................301
22.5
Summary
..............................................................................
ЗОЗ
CHAPTER
23
The Importance off Goals in Model-Based Reasoning
..................305
23.1
Introduction
............................................................ 305
23.2
Value-Based Modeling
................................................ 306
23.2.1
Biases and Models
.........................................
3О6
23.2.2
The Problem with Exploring Values
.............................
ЗО6
23.3
Setting Up
.........................................................
3j0
23.3.1
Representing Value Propositions
..................................
3IO
23.4
Details
........................................................!; 312
23.4.1
Project Options:
Ρ
....................................... 313
23.4.2
Tuning Options:
7.........................................
CONTENTS xvii
23.5
Λη
Experiment
........................................................................315
23.5.1
Case Studies:
p C P
.........................................................315
23.5.2
Search Methods
..............................................................317
23.6
Inside
lhe
Models
.....................................................................318
23.7
Results
.................................................................................319
23.8
Discussion
............................................................................. 320
CHAPTER
24
Using Goals in Model-Based Reasoning
...................................321
24.1
Multilayer Pereeptrons
...............................................................324
24.2
Multiobjective Evolutionary Algorithms
............................................ 326
24.3
HaD-MOEA
..........................................................................330
24.4
Using MOEAs for Creating SEE Models
...........................................331
24.4.
1 Multiobjective Formulation of the Problem
................................332
24.4.2
SEE Models Generated
......................................................333
24.4.3
Representation and Variation Operators
....................................333
24.4.4
Using the Solutions Produced by
а МОВА
................................ 334
24.5
Experimental Setup
...................................................................335
24.6
The Relationship Among Different Performance Measures
........................ 339
24.7
Ensembles Based on Concurrent Optimization of Performance Measures
........ 342
24.8
Emphasizing Particular Performance Measures
..................................... 346
24.9
Further Analysis of the Model Choice
...............................................
34S
24.10
Comparison Against Other Types of Models
........................................ 348
24.11
S u m m a ry..............................................................................
353
CHAPTER
25
A Final Word
.......................................................................355
Bibliography
............................................................................................. 357
|
any_adam_object | 1 |
author_GND | (DE-588)17331967X |
building | Verbundindex |
bvnumber | BV042363227 |
classification_rvk | ST 230 |
ctrlnum | (OCoLC)906700665 (DE-599)GBV81521071X |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01498nam a2200361 c 4500</leader><controlfield tag="001">BV042363227</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190730 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">150216s2015 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780124172951</subfield><subfield code="9">978-0-12-417295-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906700665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV81521071X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 230</subfield><subfield code="0">(DE-625)143617:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sharing data and models in software engineering</subfield><subfield code="c">Tim Menzies ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Morgan Kaufmann/Elsevier</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 378 S.</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verteiltes System</subfield><subfield code="0">(DE-588)4238872-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Software Engineering</subfield><subfield code="0">(DE-588)4116521-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verteiltes System</subfield><subfield code="0">(DE-588)4238872-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Menzies, Tim</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)17331967X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bamberg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027799636</subfield></datafield></record></collection> |
id | DE-604.BV042363227 |
illustrated | Illustrated |
indexdate | 2024-07-10T01:19:34Z |
institution | BVB |
isbn | 9780124172951 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027799636 |
oclc_num | 906700665 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-384 DE-739 |
owner_facet | DE-473 DE-BY-UBG DE-384 DE-739 |
physical | XXVII, 378 S. Illustrationen, Diagramme |
publishDate | 2015 |
publishDateSearch | 2015 |
publishDateSort | 2015 |
publisher | Morgan Kaufmann/Elsevier |
record_format | marc |
spelling | Sharing data and models in software engineering Tim Menzies ... Amsterdam [u.a.] Morgan Kaufmann/Elsevier 2015 XXVII, 378 S. Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Software Engineering (DE-588)4116521-4 gnd rswk-swf Verteiltes System (DE-588)4238872-7 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf Software Engineering (DE-588)4116521-4 s Verteiltes System (DE-588)4238872-7 s Modellierung (DE-588)4170297-9 s DE-604 Menzies, Tim Sonstige (DE-588)17331967X oth Digitalisierung UB Bamberg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sharing data and models in software engineering Software Engineering (DE-588)4116521-4 gnd Verteiltes System (DE-588)4238872-7 gnd Modellierung (DE-588)4170297-9 gnd |
subject_GND | (DE-588)4116521-4 (DE-588)4238872-7 (DE-588)4170297-9 |
title | Sharing data and models in software engineering |
title_auth | Sharing data and models in software engineering |
title_exact_search | Sharing data and models in software engineering |
title_full | Sharing data and models in software engineering Tim Menzies ... |
title_fullStr | Sharing data and models in software engineering Tim Menzies ... |
title_full_unstemmed | Sharing data and models in software engineering Tim Menzies ... |
title_short | Sharing data and models in software engineering |
title_sort | sharing data and models in software engineering |
topic | Software Engineering (DE-588)4116521-4 gnd Verteiltes System (DE-588)4238872-7 gnd Modellierung (DE-588)4170297-9 gnd |
topic_facet | Software Engineering Verteiltes System Modellierung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027799636&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT menziestim sharingdataandmodelsinsoftwareengineering |