Integral Geometry of Tensor Fields:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
1994
|
Schriftenreihe: | Inverse and Ill-Posed Problems Series
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Description based upon print version of record Integral geometry can be defined as determining some function or a more general quantity, which is defined on a manifold, given its integrals over submanifolds or a prescribed class. In this book, only integral geometry problems are considered for which the submanifolds are one-dimensional. The book deals with integral geometry of symmetric tensor fields. This section of integral geometry can be considered as the mathematical basis for tomography or anisotropic media whose interaction with sounding radiation depends essentially on the direction in which the latter propagates. The main mathemat |
Beschreibung: | 1 Online-Ressource (271 S.) |
ISBN: | 9789067641654 9783110900095 9783111857015 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042353256 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s1994 |||| o||u| ||||||eng d | ||
020 | |a 9789067641654 |c print |9 978-90-6764-165-4 | ||
020 | |a 9783110900095 |9 978-3-11-090009-5 | ||
020 | |a 9783110900095 |9 978-3-11-090009-5 | ||
020 | |a 9783111857015 |9 978-3-11-185701-5 | ||
024 | 7 | |a 10.1515/9783110900095 |2 doi | |
035 | |a (OCoLC)843635167 | ||
035 | |a (DE-599)BVBBV042353256 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 516.3 | |
100 | 1 | |a Sharafutdinov, V. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Integral Geometry of Tensor Fields |
264 | 1 | |a Berlin |b De Gruyter |c 1994 | |
300 | |a 1 Online-Ressource (271 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Inverse and Ill-Posed Problems Series |v 1 | |
500 | |a Description based upon print version of record | ||
500 | |a Integral geometry can be defined as determining some function or a more general quantity, which is defined on a manifold, given its integrals over submanifolds or a prescribed class. In this book, only integral geometry problems are considered for which the submanifolds are one-dimensional. The book deals with integral geometry of symmetric tensor fields. This section of integral geometry can be considered as the mathematical basis for tomography or anisotropic media whose interaction with sounding radiation depends essentially on the direction in which the latter propagates. The main mathemat | ||
653 | |a Electronic books | ||
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110900095 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_1990/1999 | |
940 | 1 | |q ZDB-23-GMA_1990/1999 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027789736 |
Datensatz im Suchindex
_version_ | 1804152977377722368 |
---|---|
any_adam_object | |
author | Sharafutdinov, V. A. |
author_facet | Sharafutdinov, V. A. |
author_role | aut |
author_sort | Sharafutdinov, V. A. |
author_variant | v a s va vas |
building | Verbundindex |
bvnumber | BV042353256 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)843635167 (DE-599)BVBBV042353256 |
dewey-full | 516.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3 |
dewey-search | 516.3 |
dewey-sort | 3516.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02155nmm a2200481zcb4500</leader><controlfield tag="001">BV042353256</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789067641654</subfield><subfield code="c">print</subfield><subfield code="9">978-90-6764-165-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110900095</subfield><subfield code="9">978-3-11-090009-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110900095</subfield><subfield code="9">978-3-11-090009-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111857015</subfield><subfield code="9">978-3-11-185701-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110900095</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)843635167</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042353256</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sharafutdinov, V. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral Geometry of Tensor Fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (271 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Inverse and Ill-Posed Problems Series</subfield><subfield code="v">1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integral geometry can be defined as determining some function or a more general quantity, which is defined on a manifold, given its integrals over submanifolds or a prescribed class. In this book, only integral geometry problems are considered for which the submanifolds are one-dimensional. The book deals with integral geometry of symmetric tensor fields. This section of integral geometry can be considered as the mathematical basis for tomography or anisotropic media whose interaction with sounding radiation depends essentially on the direction in which the latter propagates. The main mathemat</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110900095</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_1990/1999</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_1990/1999</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027789736</subfield></datafield></record></collection> |
id | DE-604.BV042353256 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:17Z |
institution | BVB |
isbn | 9789067641654 9783110900095 9783111857015 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027789736 |
oclc_num | 843635167 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (271 S.) |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_1990/1999 ZDB-23-GMA_1990/1999 |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | De Gruyter |
record_format | marc |
series2 | Inverse and Ill-Posed Problems Series |
spelling | Sharafutdinov, V. A. Verfasser aut Integral Geometry of Tensor Fields Berlin De Gruyter 1994 1 Online-Ressource (271 S.) txt rdacontent c rdamedia cr rdacarrier Inverse and Ill-Posed Problems Series 1 Description based upon print version of record Integral geometry can be defined as determining some function or a more general quantity, which is defined on a manifold, given its integrals over submanifolds or a prescribed class. In this book, only integral geometry problems are considered for which the submanifolds are one-dimensional. The book deals with integral geometry of symmetric tensor fields. This section of integral geometry can be considered as the mathematical basis for tomography or anisotropic media whose interaction with sounding radiation depends essentially on the direction in which the latter propagates. The main mathemat Electronic books http://www.degruyter.com/doi/book/10.1515/9783110900095 Verlag Volltext |
spellingShingle | Sharafutdinov, V. A. Integral Geometry of Tensor Fields |
title | Integral Geometry of Tensor Fields |
title_auth | Integral Geometry of Tensor Fields |
title_exact_search | Integral Geometry of Tensor Fields |
title_full | Integral Geometry of Tensor Fields |
title_fullStr | Integral Geometry of Tensor Fields |
title_full_unstemmed | Integral Geometry of Tensor Fields |
title_short | Integral Geometry of Tensor Fields |
title_sort | integral geometry of tensor fields |
url | http://www.degruyter.com/doi/book/10.1515/9783110900095 |
work_keys_str_mv | AT sharafutdinovva integralgeometryoftensorfields |