Condensing multivalued maps and semilinear differential inclusions in Banach spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ;New York
W. de Gruyter
2001
|
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications
7 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Includes bibliographical references (p. [213]-228) and index Biographical note: Prof. Pietro Zecca, Dipartimento di Energetica, Università degli studi di Firenze, Italy.Prof. Mikhail Kamenskiì, University of Voronezh, Russia and Université de Rouen, France.Valeri Obukhovskiì, Università di Firenze, Italy Main description: The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented |
Beschreibung: | 1 Online-Ressource (xi, 231 p) |
ISBN: | 3110169894 9783110169898 9783110870893 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042352190 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2001 |||| o||u| ||||||eng d | ||
020 | |a 3110169894 |9 3-11-016989-4 | ||
020 | |a 9783110169898 |9 978-3-11-016989-8 | ||
020 | |a 9783110870893 |9 978-3-11-087089-3 | ||
024 | 7 | |a 10.1515/9783110870893 |2 doi | |
035 | |a (OCoLC)815507276 | ||
035 | |a (DE-599)BVBBV042352190 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 515.2 | |
100 | 1 | |a Kamenskii, Mikhail |e Verfasser |4 aut | |
245 | 1 | 0 | |a Condensing multivalued maps and semilinear differential inclusions in Banach spaces |c Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca |
264 | 1 | |a Berlin ;New York |b W. de Gruyter |c 2001 | |
300 | |a 1 Online-Ressource (xi, 231 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in nonlinear analysis and applications |v 7 | |
500 | |a Includes bibliographical references (p. [213]-228) and index | ||
500 | |a Biographical note: Prof. Pietro Zecca, Dipartimento di Energetica, Università degli studi di Firenze, Italy.Prof. Mikhail Kamenskiì, University of Voronezh, Russia and Université de Rouen, France.Valeri Obukhovskiì, Università di Firenze, Italy | ||
500 | |a Main description: The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented | ||
650 | 4 | |a Banach spaces | |
650 | 4 | |a Differential inclusions | |
650 | 4 | |a Set-valued maps | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialinklusion |0 (DE-588)4149777-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |2 gnd |9 rswk-swf |
653 | |a Banach spaces | ||
653 | |a Differential inclusions | ||
653 | |a Set-valued maps | ||
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |D s |
689 | 0 | 2 | |a Differentialinklusion |0 (DE-588)4149777-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Obukhovskii, Valeri |e Sonstige |4 oth | |
700 | 1 | |a Zecca, Pietro |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110870893 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027788671 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152974997454848 |
---|---|
any_adam_object | |
author | Kamenskii, Mikhail |
author_facet | Kamenskii, Mikhail |
author_role | aut |
author_sort | Kamenskii, Mikhail |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV042352190 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)815507276 (DE-599)BVBBV042352190 |
dewey-full | 515.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.2 |
dewey-search | 515.2 |
dewey-sort | 3515.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03609nmm a2200661zcb4500</leader><controlfield tag="001">BV042352190</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110169894</subfield><subfield code="9">3-11-016989-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110169898</subfield><subfield code="9">978-3-11-016989-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110870893</subfield><subfield code="9">978-3-11-087089-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110870893</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815507276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042352190</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.2</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kamenskii, Mikhail</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Condensing multivalued maps and semilinear differential inclusions in Banach spaces</subfield><subfield code="c">Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;New York</subfield><subfield code="b">W. de Gruyter</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 231 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications</subfield><subfield code="v">7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [213]-228) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Prof. Pietro Zecca, Dipartimento di Energetica, Università degli studi di Firenze, Italy.Prof. Mikhail Kamenskiì, University of Voronezh, Russia and Université de Rouen, France.Valeri Obukhovskiì, Università di Firenze, Italy</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Banach spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential inclusions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued maps</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Banach spaces</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Differential inclusions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Set-valued maps</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Differentialinklusion</subfield><subfield code="0">(DE-588)4149777-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Obukhovskii, Valeri</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zecca, Pietro</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110870893</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027788671</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042352190 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:15Z |
institution | BVB |
isbn | 3110169894 9783110169898 9783110870893 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027788671 |
oclc_num | 815507276 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (xi, 231 p) |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | W. de Gruyter |
record_format | marc |
series2 | De Gruyter series in nonlinear analysis and applications |
spelling | Kamenskii, Mikhail Verfasser aut Condensing multivalued maps and semilinear differential inclusions in Banach spaces Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca Berlin ;New York W. de Gruyter 2001 1 Online-Ressource (xi, 231 p) txt rdacontent c rdamedia cr rdacarrier De Gruyter series in nonlinear analysis and applications 7 Includes bibliographical references (p. [213]-228) and index Biographical note: Prof. Pietro Zecca, Dipartimento di Energetica, Università degli studi di Firenze, Italy.Prof. Mikhail Kamenskiì, University of Voronezh, Russia and Université de Rouen, France.Valeri Obukhovskiì, Università di Firenze, Italy Main description: The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented Banach spaces Differential inclusions Set-valued maps Banach-Raum (DE-588)4004402-6 gnd rswk-swf Differentialinklusion (DE-588)4149777-6 gnd rswk-swf Mengenwertige Abbildung (DE-588)4270772-9 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Mengenwertige Abbildung (DE-588)4270772-9 s Differentialinklusion (DE-588)4149777-6 s 1\p DE-604 Obukhovskii, Valeri Sonstige oth Zecca, Pietro Sonstige oth http://www.degruyter.com/doi/book/10.1515/9783110870893 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kamenskii, Mikhail Condensing multivalued maps and semilinear differential inclusions in Banach spaces Banach spaces Differential inclusions Set-valued maps Banach-Raum (DE-588)4004402-6 gnd Differentialinklusion (DE-588)4149777-6 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4149777-6 (DE-588)4270772-9 |
title | Condensing multivalued maps and semilinear differential inclusions in Banach spaces |
title_auth | Condensing multivalued maps and semilinear differential inclusions in Banach spaces |
title_exact_search | Condensing multivalued maps and semilinear differential inclusions in Banach spaces |
title_full | Condensing multivalued maps and semilinear differential inclusions in Banach spaces Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca |
title_fullStr | Condensing multivalued maps and semilinear differential inclusions in Banach spaces Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca |
title_full_unstemmed | Condensing multivalued maps and semilinear differential inclusions in Banach spaces Mikhail Kamenskii, Valeri Obukhovskii, Pietro Zecca |
title_short | Condensing multivalued maps and semilinear differential inclusions in Banach spaces |
title_sort | condensing multivalued maps and semilinear differential inclusions in banach spaces |
topic | Banach spaces Differential inclusions Set-valued maps Banach-Raum (DE-588)4004402-6 gnd Differentialinklusion (DE-588)4149777-6 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd |
topic_facet | Banach spaces Differential inclusions Set-valued maps Banach-Raum Differentialinklusion Mengenwertige Abbildung |
url | http://www.degruyter.com/doi/book/10.1515/9783110870893 |
work_keys_str_mv | AT kamenskiimikhail condensingmultivaluedmapsandsemilineardifferentialinclusionsinbanachspaces AT obukhovskiivaleri condensingmultivaluedmapsandsemilineardifferentialinclusionsinbanachspaces AT zeccapietro condensingmultivaluedmapsandsemilineardifferentialinclusionsinbanachspaces |