The d-bar Neumann Problem and Schrödinger Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[2014]
|
Schriftenreihe: | De Gruyter Expositions in Mathematics
59 |
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers Volltext |
Beschreibung: | Description based upon print version of record Biographical note: Friedrich Haslinger,University of Vienna, Austria Main description: The topic of this bookis located at the intersection of complex analysis, operator theory and partial differential equations. First we investigate the canonical solution operator to d-bar restricted to Bergman spaces of holomorphic L2 functions in one and several complex variables. These operators are Hankel operators of special type. In the following we consider the general d-bar-complex and derive properties of the complex Laplacian on L2 spaces of bounded pseudoconvex domains and on weighted L2 spaces.The main part is devoted to compactness of the d-bar-Neumann operator. The last part will contain a detailed account of the application of the d-bar-methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians |
Beschreibung: | 1 Online-Ressource (XI, 241 S.) |
ISBN: | 9783110315356 9783110315363 9783110377835 |
DOI: | 10.1515/9783110315356 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042349087 | ||
003 | DE-604 | ||
005 | 20240313 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2014 |||| o||u| ||||||eng d | ||
020 | |a 9783110315356 |9 978-3-11-031535-6 | ||
020 | |a 9783110315363 |9 978-3-11-031536-3 | ||
020 | |a 9783110377835 |9 978-3-11-037783-5 | ||
024 | 7 | |a 10.1515/9783110315356 |2 doi | |
035 | |a (OCoLC)890071094 | ||
035 | |a (DE-599)BVBBV042349087 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-706 |a DE-703 |a DE-1043 |a DE-19 | ||
082 | 0 | |a 515/.9 | |
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a SK 700 |0 (DE-625)143253: |2 rvk | ||
100 | 1 | |a Haslinger, Friedrich |0 (DE-588)1053550928 |4 aut | |
245 | 1 | 0 | |a The d-bar Neumann Problem and Schrödinger Operators |
264 | 1 | |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (XI, 241 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a de Gruyter expositions in mathematics |v 59 | |
500 | |a Description based upon print version of record | ||
500 | |a Biographical note: Friedrich Haslinger,University of Vienna, Austria | ||
500 | |a Main description: The topic of this bookis located at the intersection of complex analysis, operator theory and partial differential equations. First we investigate the canonical solution operator to d-bar restricted to Bergman spaces of holomorphic L2 functions in one and several complex variables. These operators are Hankel operators of special type. In the following we consider the general d-bar-complex and derive properties of the complex Laplacian on L2 spaces of bounded pseudoconvex domains and on weighted L2 spaces.The main part is devoted to compactness of the d-bar-Neumann operator. The last part will contain a detailed account of the application of the d-bar-methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians | ||
650 | 0 | 7 | |a Neumann-Problem |0 (DE-588)4171566-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompaktheit |0 (DE-588)4456100-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hankel-Operator |0 (DE-588)4314042-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cauchy-Riemannsche Differentialgleichungen |0 (DE-588)4147397-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Operator |0 (DE-588)4072278-8 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Cauchy-Riemannsche Differentialgleichungen |0 (DE-588)4147397-8 |D s |
689 | 0 | 1 | |a Neumann-Problem |0 (DE-588)4171566-4 |D s |
689 | 0 | 2 | |a Hankel-Operator |0 (DE-588)4314042-7 |D s |
689 | 0 | 3 | |a Kompaktheit |0 (DE-588)4456100-3 |D s |
689 | 0 | 4 | |a Hamilton-Operator |0 (DE-588)4072278-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-031530-1 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-031530-1 |
830 | 0 | |a De Gruyter Expositions in Mathematics |v 59 |w (DE-604)BV044998893 |9 59 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110315356 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110315356&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-EXM |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027785568 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152968674541568 |
---|---|
any_adam_object | |
author | Haslinger, Friedrich |
author_GND | (DE-588)1053550928 |
author_facet | Haslinger, Friedrich |
author_role | aut |
author_sort | Haslinger, Friedrich |
author_variant | f h fh |
building | Verbundindex |
bvnumber | BV042349087 |
classification_rvk | SK 620 SK 700 |
collection | ZDB-23-EXM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)890071094 (DE-599)BVBBV042349087 |
dewey-full | 515/.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.9 |
dewey-search | 515/.9 |
dewey-sort | 3515 19 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110315356 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03393nmm a2200637zcb4500</leader><controlfield tag="001">BV042349087</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110315356</subfield><subfield code="9">978-3-11-031535-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110315363</subfield><subfield code="9">978-3-11-031536-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110377835</subfield><subfield code="9">978-3-11-037783-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110315356</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890071094</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042349087</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 700</subfield><subfield code="0">(DE-625)143253:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haslinger, Friedrich</subfield><subfield code="0">(DE-588)1053550928</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The d-bar Neumann Problem and Schrödinger Operators</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 241 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">59</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Friedrich Haslinger,University of Vienna, Austria</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: The topic of this bookis located at the intersection of complex analysis, operator theory and partial differential equations. First we investigate the canonical solution operator to d-bar restricted to Bergman spaces of holomorphic L2 functions in one and several complex variables. These operators are Hankel operators of special type. In the following we consider the general d-bar-complex and derive properties of the complex Laplacian on L2 spaces of bounded pseudoconvex domains and on weighted L2 spaces.The main part is devoted to compactness of the d-bar-Neumann operator. The last part will contain a detailed account of the application of the d-bar-methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neumann-Problem</subfield><subfield code="0">(DE-588)4171566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompaktheit</subfield><subfield code="0">(DE-588)4456100-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hankel-Operator</subfield><subfield code="0">(DE-588)4314042-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Riemannsche Differentialgleichungen</subfield><subfield code="0">(DE-588)4147397-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cauchy-Riemannsche Differentialgleichungen</subfield><subfield code="0">(DE-588)4147397-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neumann-Problem</subfield><subfield code="0">(DE-588)4171566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Hankel-Operator</subfield><subfield code="0">(DE-588)4314042-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kompaktheit</subfield><subfield code="0">(DE-588)4456100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Hamilton-Operator</subfield><subfield code="0">(DE-588)4072278-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-031530-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-031530-1</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Expositions in Mathematics</subfield><subfield code="v">59</subfield><subfield code="w">(DE-604)BV044998893</subfield><subfield code="9">59</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110315356</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110315356&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-EXM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027785568</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042349087 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:09Z |
institution | BVB |
isbn | 9783110315356 9783110315363 9783110377835 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027785568 |
oclc_num | 890071094 |
open_access_boolean | |
owner | DE-83 DE-706 DE-703 DE-1043 DE-19 DE-BY-UBM |
owner_facet | DE-83 DE-706 DE-703 DE-1043 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (XI, 241 S.) |
psigel | ZDB-23-EXM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
record_format | marc |
series | De Gruyter Expositions in Mathematics |
series2 | de Gruyter expositions in mathematics |
spelling | Haslinger, Friedrich (DE-588)1053550928 aut The d-bar Neumann Problem and Schrödinger Operators [2014] © 2014 1 Online-Ressource (XI, 241 S.) txt rdacontent c rdamedia cr rdacarrier de Gruyter expositions in mathematics 59 Description based upon print version of record Biographical note: Friedrich Haslinger,University of Vienna, Austria Main description: The topic of this bookis located at the intersection of complex analysis, operator theory and partial differential equations. First we investigate the canonical solution operator to d-bar restricted to Bergman spaces of holomorphic L2 functions in one and several complex variables. These operators are Hankel operators of special type. In the following we consider the general d-bar-complex and derive properties of the complex Laplacian on L2 spaces of bounded pseudoconvex domains and on weighted L2 spaces.The main part is devoted to compactness of the d-bar-Neumann operator. The last part will contain a detailed account of the application of the d-bar-methods to Schrödinger operators, Pauli and Dirac operators and to Witten-Laplacians Neumann-Problem (DE-588)4171566-4 gnd rswk-swf Kompaktheit (DE-588)4456100-3 gnd rswk-swf Hankel-Operator (DE-588)4314042-7 gnd rswk-swf Cauchy-Riemannsche Differentialgleichungen (DE-588)4147397-8 gnd rswk-swf Hamilton-Operator (DE-588)4072278-8 gnd rswk-swf Electronic books Cauchy-Riemannsche Differentialgleichungen (DE-588)4147397-8 s Neumann-Problem (DE-588)4171566-4 s Hankel-Operator (DE-588)4314042-7 s Kompaktheit (DE-588)4456100-3 s Hamilton-Operator (DE-588)4072278-8 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-031530-1 De Gruyter Expositions in Mathematics 59 (DE-604)BV044998893 59 https://doi.org/10.1515/9783110315356 Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110315356&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Haslinger, Friedrich The d-bar Neumann Problem and Schrödinger Operators De Gruyter Expositions in Mathematics Neumann-Problem (DE-588)4171566-4 gnd Kompaktheit (DE-588)4456100-3 gnd Hankel-Operator (DE-588)4314042-7 gnd Cauchy-Riemannsche Differentialgleichungen (DE-588)4147397-8 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
subject_GND | (DE-588)4171566-4 (DE-588)4456100-3 (DE-588)4314042-7 (DE-588)4147397-8 (DE-588)4072278-8 |
title | The d-bar Neumann Problem and Schrödinger Operators |
title_auth | The d-bar Neumann Problem and Schrödinger Operators |
title_exact_search | The d-bar Neumann Problem and Schrödinger Operators |
title_full | The d-bar Neumann Problem and Schrödinger Operators |
title_fullStr | The d-bar Neumann Problem and Schrödinger Operators |
title_full_unstemmed | The d-bar Neumann Problem and Schrödinger Operators |
title_short | The d-bar Neumann Problem and Schrödinger Operators |
title_sort | the d bar neumann problem and schrodinger operators |
topic | Neumann-Problem (DE-588)4171566-4 gnd Kompaktheit (DE-588)4456100-3 gnd Hankel-Operator (DE-588)4314042-7 gnd Cauchy-Riemannsche Differentialgleichungen (DE-588)4147397-8 gnd Hamilton-Operator (DE-588)4072278-8 gnd |
topic_facet | Neumann-Problem Kompaktheit Hankel-Operator Cauchy-Riemannsche Differentialgleichungen Hamilton-Operator |
url | https://doi.org/10.1515/9783110315356 http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110315356&searchTitles=true |
volume_link | (DE-604)BV044998893 |
work_keys_str_mv | AT haslingerfriedrich thedbarneumannproblemandschrodingeroperators |