Krichever-Novikov type algebras: theory and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
[2014]
|
Schriftenreihe: | De Gruyter studies in mathematics
53 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are |
Beschreibung: | 1 Online-Ressource (XV, 360 S.) |
ISBN: | 9783110265170 9783110279641 9783110280258 9783110381474 |
DOI: | 10.1515/9783110279641 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042348560 | ||
003 | DE-604 | ||
005 | 20190828 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2014 |||| o||u| ||||||eng d | ||
020 | |a 9783110265170 |9 978-3-11-026517-0 | ||
020 | |a 9783110265170 |c print |9 978-3-11-026517-0 | ||
020 | |a 9783110279641 |9 978-3-11-027964-1 | ||
020 | |a 9783110280258 |9 978-3-11-028025-8 | ||
020 | |a 9783110381474 |9 978-3-11-038147-4 | ||
024 | 7 | |a 10.1515/9783110279641 |2 doi | |
035 | |a (OCoLC)890070954 | ||
035 | |a (DE-599)BVBBV042348560 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 510 | |
082 | 0 | |a 512/.482 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
100 | 1 | |a Schlichenmaier, Martin |4 aut | |
245 | 1 | 0 | |a Krichever-Novikov type algebras |b theory and applications |c Martin Schlichenmaier |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c [2014] | |
264 | 4 | |c © 2014 | |
300 | |a 1 Online-Ressource (XV, 360 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v 53 | |
500 | |a Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are | ||
650 | 4 | |a Infinite dimensional Lie algebras | |
650 | 0 | 7 | |a Krichever-Novikov-Algebra |0 (DE-588)4272706-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Krichever-Novikov-Algebra |0 (DE-588)4272706-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-026517-0 |
830 | 0 | |a De Gruyter studies in mathematics |v 53 |w (DE-604)BV044966417 |9 53 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110279641 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110279641&searchTitles=true |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/view/product/181578 |x Verlag |3 Volltext |
912 | |a ZDB-23-GSM |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027785041 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152968232042496 |
---|---|
any_adam_object | |
author | Schlichenmaier, Martin |
author_facet | Schlichenmaier, Martin |
author_role | aut |
author_sort | Schlichenmaier, Martin |
author_variant | m s ms |
building | Verbundindex |
bvnumber | BV042348560 |
classification_rvk | SK 340 |
collection | ZDB-23-GSM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)890070954 (DE-599)BVBBV042348560 |
dewey-full | 510 512/.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics 512 - Algebra |
dewey-raw | 510 512/.482 |
dewey-search | 510 512/.482 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110279641 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02925nmm a2200613zcb4500</leader><controlfield tag="001">BV042348560</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190828 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110265170</subfield><subfield code="9">978-3-11-026517-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110265170</subfield><subfield code="c">print</subfield><subfield code="9">978-3-11-026517-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110279641</subfield><subfield code="9">978-3-11-027964-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110280258</subfield><subfield code="9">978-3-11-028025-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110381474</subfield><subfield code="9">978-3-11-038147-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110279641</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)890070954</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042348560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schlichenmaier, Martin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Krichever-Novikov type algebras</subfield><subfield code="b">theory and applications</subfield><subfield code="c">Martin Schlichenmaier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">[2014]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 360 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">53</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite dimensional Lie algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krichever-Novikov-Algebra</subfield><subfield code="0">(DE-588)4272706-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Krichever-Novikov-Algebra</subfield><subfield code="0">(DE-588)4272706-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-026517-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">53</subfield><subfield code="w">(DE-604)BV044966417</subfield><subfield code="9">53</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110279641</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110279641&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/view/product/181578</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GSM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027785041</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042348560 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:06Z |
institution | BVB |
isbn | 9783110265170 9783110279641 9783110280258 9783110381474 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027785041 |
oclc_num | 890070954 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (XV, 360 S.) |
psigel | ZDB-23-GSM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | de Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Schlichenmaier, Martin aut Krichever-Novikov type algebras theory and applications Martin Schlichenmaier Berlin [u.a.] de Gruyter [2014] © 2014 1 Online-Ressource (XV, 360 S.) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 53 Krichever and Novikov introduced certain classes of infinite dimensionalLie algebrasto extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them toa more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are Infinite dimensional Lie algebras Krichever-Novikov-Algebra (DE-588)4272706-6 gnd rswk-swf Krichever-Novikov-Algebra (DE-588)4272706-6 s 1\p DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-026517-0 De Gruyter studies in mathematics 53 (DE-604)BV044966417 53 https://doi.org/10.1515/9783110279641 Verlag URL des Erstveröffentlichers Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110279641&searchTitles=true Verlag Volltext http://www.degruyter.com/view/product/181578 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Schlichenmaier, Martin Krichever-Novikov type algebras theory and applications De Gruyter studies in mathematics Infinite dimensional Lie algebras Krichever-Novikov-Algebra (DE-588)4272706-6 gnd |
subject_GND | (DE-588)4272706-6 |
title | Krichever-Novikov type algebras theory and applications |
title_auth | Krichever-Novikov type algebras theory and applications |
title_exact_search | Krichever-Novikov type algebras theory and applications |
title_full | Krichever-Novikov type algebras theory and applications Martin Schlichenmaier |
title_fullStr | Krichever-Novikov type algebras theory and applications Martin Schlichenmaier |
title_full_unstemmed | Krichever-Novikov type algebras theory and applications Martin Schlichenmaier |
title_short | Krichever-Novikov type algebras |
title_sort | krichever novikov type algebras theory and applications |
title_sub | theory and applications |
topic | Infinite dimensional Lie algebras Krichever-Novikov-Algebra (DE-588)4272706-6 gnd |
topic_facet | Infinite dimensional Lie algebras Krichever-Novikov-Algebra |
url | https://doi.org/10.1515/9783110279641 http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110279641&searchTitles=true http://www.degruyter.com/view/product/181578 |
volume_link | (DE-604)BV044966417 |
work_keys_str_mv | AT schlichenmaiermartin krichevernovikovtypealgebrastheoryandapplications |