Algebraic graph theory: morphisms, monoids and matrices
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2011
|
Schriftenreihe: | De Gruyter studies in mathematics
41 |
Schlagworte: | |
Online-Zugang: | DE-188 DE-739 Volltext Volltext |
Beschreibung: | Differences between the printed and electronic version of the document are possible. - Includes bibliographical references (p. [285]-300) and indexes. - Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces |
Beschreibung: | 1 Online-Ressource (XVI, 308 S.) graph. Darst. |
ISBN: | 1283400448 9781283400442 9783110255096 |
DOI: | 10.1515/9783110255096 |
Internformat
MARC
LEADER | 00000nmm a22000001cb4500 | ||
---|---|---|---|
001 | BV042348236 | ||
003 | DE-604 | ||
005 | 20240624 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2011 |||| o||u| ||||||eng d | ||
020 | |a 1283400448 |c ebk |9 1-283-40044-8 | ||
020 | |a 9781283400442 |c MyiLibrary |9 978-1-283-40044-2 | ||
020 | |a 9783110255096 |c Online |9 978-3-11-025509-6 | ||
024 | 7 | |a 10.1515/9783110255096 |2 doi | |
035 | |a (OCoLC)769190162 | ||
035 | |a (DE-599)BVBBV042348236 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-83 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 |a DE-188 | ||
082 | 0 | |a 511/.5 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
100 | 1 | |a Knauer, Ulrich |d 1942- |e Verfasser |0 (DE-588)14404787X |4 aut | |
245 | 1 | 0 | |a Algebraic graph theory |b morphisms, monoids and matrices |c Ulrich Knauer |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2011 | |
300 | |a 1 Online-Ressource (XVI, 308 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics |v 41 | |
500 | |a Differences between the printed and electronic version of the document are possible. - Includes bibliographical references (p. [285]-300) and indexes. - Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden | ||
500 | |a Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors | ||
500 | |a This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces | ||
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Matrices | |
650 | 4 | |a Monoids | |
650 | 4 | |a Morphisms (Mathematics) | |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | 1 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-025408-2 |w (DE-604)BV039547181 |
830 | 0 | |a De Gruyter studies in mathematics |v 41 |w (DE-604)BV044966417 |9 41 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110255096 |x Verlag |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110255096 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-GSM |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA |a ZDB-23-DMN | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
966 | e | |u https://doi.org/10.1515/9783110255096 |l DE-188 |p ZDB-23-DMN |q ZDB-23-DMN 2011 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110255096 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG_Kauf2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805078620025126912 |
---|---|
adam_text | |
any_adam_object | |
author | Knauer, Ulrich 1942- |
author_GND | (DE-588)14404787X |
author_facet | Knauer, Ulrich 1942- |
author_role | aut |
author_sort | Knauer, Ulrich 1942- |
author_variant | u k uk |
building | Verbundindex |
bvnumber | BV042348236 |
classification_rvk | SK 890 |
collection | ZDB-23-GSM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-DMN |
ctrlnum | (OCoLC)769190162 (DE-599)BVBBV042348236 |
dewey-full | 511/.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511/.5 |
dewey-search | 511/.5 |
dewey-sort | 3511 15 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110255096 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001cb4500</leader><controlfield tag="001">BV042348236</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240624</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2011 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283400448</subfield><subfield code="c">ebk</subfield><subfield code="9">1-283-40044-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283400442</subfield><subfield code="c">MyiLibrary</subfield><subfield code="9">978-1-283-40044-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110255096</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-11-025509-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110255096</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)769190162</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042348236</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511/.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knauer, Ulrich</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14404787X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algebraic graph theory</subfield><subfield code="b">morphisms, monoids and matrices</subfield><subfield code="c">Ulrich Knauer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 308 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">41</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Differences between the printed and electronic version of the document are possible. - Includes bibliographical references (p. [285]-300) and indexes. - Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monoids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Morphisms (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-025408-2</subfield><subfield code="w">(DE-604)BV039547181</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">41</subfield><subfield code="w">(DE-604)BV044966417</subfield><subfield code="9">41</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110255096</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110255096</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GSM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield><subfield code="a">ZDB-23-DMN</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110255096</subfield><subfield code="l">DE-188</subfield><subfield code="p">ZDB-23-DMN</subfield><subfield code="q">ZDB-23-DMN 2011</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110255096</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG_Kauf2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042348236 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:31:58Z |
institution | BVB |
isbn | 1283400448 9781283400442 9783110255096 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027784717 |
oclc_num | 769190162 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-83 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
physical | 1 Online-Ressource (XVI, 308 S.) graph. Darst. |
psigel | ZDB-23-GSM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-DMN FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 ZDB-23-DMN ZDB-23-DMN 2011 ZDB-23-DGG UPA_PDA_DGG_Kauf2023 |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | de Gruyter |
record_format | marc |
series | De Gruyter studies in mathematics |
series2 | De Gruyter studies in mathematics |
spelling | Knauer, Ulrich 1942- Verfasser (DE-588)14404787X aut Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer Berlin [u.a.] de Gruyter 2011 1 Online-Ressource (XVI, 308 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 41 Differences between the printed and electronic version of the document are possible. - Includes bibliographical references (p. [285]-300) and indexes. - Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures – like roads, computers, telephones – instances of abstract data structures – like lists, stacks, trees – and functional or object oriented programming. In turn, graphs are models for mathematical objects, like categories and functors This highly self-contained book about algebraic graph theory is written with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. It ends with a challenging chapter on the topological question of embeddability of Cayley graphs on surfaces Algebraic topology Graph theory Matrices Monoids Morphisms (Mathematics) Graphentheorie (DE-588)4113782-6 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Graphentheorie (DE-588)4113782-6 s Algebra (DE-588)4001156-2 s DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-025408-2 (DE-604)BV039547181 De Gruyter studies in mathematics 41 (DE-604)BV044966417 41 http://www.degruyter.com/doi/book/10.1515/9783110255096 Verlag Volltext https://doi.org/10.1515/9783110255096 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Knauer, Ulrich 1942- Algebraic graph theory morphisms, monoids and matrices De Gruyter studies in mathematics Algebraic topology Graph theory Matrices Monoids Morphisms (Mathematics) Graphentheorie (DE-588)4113782-6 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4113782-6 (DE-588)4001156-2 (DE-588)4123623-3 |
title | Algebraic graph theory morphisms, monoids and matrices |
title_auth | Algebraic graph theory morphisms, monoids and matrices |
title_exact_search | Algebraic graph theory morphisms, monoids and matrices |
title_full | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer |
title_fullStr | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer |
title_full_unstemmed | Algebraic graph theory morphisms, monoids and matrices Ulrich Knauer |
title_short | Algebraic graph theory |
title_sort | algebraic graph theory morphisms monoids and matrices |
title_sub | morphisms, monoids and matrices |
topic | Algebraic topology Graph theory Matrices Monoids Morphisms (Mathematics) Graphentheorie (DE-588)4113782-6 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Algebraic topology Graph theory Matrices Monoids Morphisms (Mathematics) Graphentheorie Algebra Lehrbuch |
url | http://www.degruyter.com/doi/book/10.1515/9783110255096 https://doi.org/10.1515/9783110255096 |
volume_link | (DE-604)BV044966417 |
work_keys_str_mv | AT knauerulrich algebraicgraphtheorymorphismsmonoidsandmatrices |