Invariant distances and metrics in complex analysis:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
[2013]
|
Ausgabe: | 2. Aufl., 2nd ext. ed |
Schriftenreihe: | de Gruyter expositions in mathematics
9 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext Volltext |
Beschreibung: | Description based upon print version of record Biographical note: Marek Jarnicki, Jagiellonian University, Krakow, Poland; Peter Pflug, Carl von Ossietzky Universität, Oldenburg, Germany Main description: As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics |
Beschreibung: | 1 Online-Ressource (PDF-Version: XVII, 861 S.) |
ISBN: | 9783110250435 9783110253863 9783112188309 |
DOI: | 10.1515/9783110253863 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042348214 | ||
003 | DE-604 | ||
005 | 20190528 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783110250435 |c print; print |9 978-3-11-025043-5 | ||
020 | |a 9783110253863 |c Electronic book text |9 978-3-11-025386-3 | ||
020 | |a 9783110253863 |9 978-3-11-025386-3 | ||
020 | |a 9783112188309 |9 978-3-11-218830-9 | ||
024 | 7 | |a 10.1515/9783110253863 |2 doi | |
035 | |a (OCoLC)852378124 | ||
035 | |a (DE-599)BVBBV042348214 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-83 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 514.325 | |
100 | 1 | |a Pflug, Peter |d 1943- |0 (DE-588)1018111301 |4 aut | |
245 | 1 | 0 | |a Invariant distances and metrics in complex analysis |c Peter Pflug; Marek Jarnicki |
250 | |a 2. Aufl., 2nd ext. ed | ||
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c [2013] | |
264 | 4 | |c © 2013 | |
300 | |a 1 Online-Ressource (PDF-Version: XVII, 861 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a de Gruyter expositions in mathematics |v 9 | |
500 | |a Description based upon print version of record | ||
500 | |a Biographical note: Marek Jarnicki, Jagiellonian University, Krakow, Poland; Peter Pflug, Carl von Ossietzky Universität, Oldenburg, Germany | ||
500 | |a Main description: As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics | ||
650 | 0 | 7 | |a Pseudometrik |0 (DE-588)4176150-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudoabstand |0 (DE-588)4335987-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Invariante |0 (DE-588)4128781-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Funktion |0 (DE-588)4217733-9 |2 gnd |9 rswk-swf |
653 | |a Functions of complex variables | ||
653 | |a Invariants | ||
653 | |a Metric spaces | ||
653 | |a Pseudodistances | ||
653 | |a Electronic books | ||
689 | 0 | 0 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | 1 | |a Pseudoabstand |0 (DE-588)4335987-5 |D s |
689 | 0 | 2 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 0 | 3 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | 4 | |a Pseudometrik |0 (DE-588)4176150-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Komplexe Funktion |0 (DE-588)4217733-9 |D s |
689 | 1 | 1 | |a Pseudoabstand |0 (DE-588)4335987-5 |D s |
689 | 1 | 2 | |a Invariante |0 (DE-588)4128781-2 |D s |
689 | 1 | 3 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Jarnicki, Marek |d 1952- |0 (DE-588)101811095X |4 aut | |
830 | 0 | |a de Gruyter expositions in mathematics |v 9 |w (DE-604)BV044998893 |9 9 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110253863 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110253863 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110253863&searchTitles=true |x Verlag |3 Volltext |
912 | |a ZDB-23-EXM |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027784695 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152968193245184 |
---|---|
any_adam_object | |
author | Pflug, Peter 1943- Jarnicki, Marek 1952- |
author_GND | (DE-588)1018111301 (DE-588)101811095X |
author_facet | Pflug, Peter 1943- Jarnicki, Marek 1952- |
author_role | aut aut |
author_sort | Pflug, Peter 1943- |
author_variant | p p pp m j mj |
building | Verbundindex |
bvnumber | BV042348214 |
collection | ZDB-23-EXM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)852378124 (DE-599)BVBBV042348214 |
dewey-full | 514.325 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.325 |
dewey-search | 514.325 |
dewey-sort | 3514.325 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110253863 |
edition | 2. Aufl., 2nd ext. ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04094nmm a2200841zcb4500</leader><controlfield tag="001">BV042348214</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190528 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250435</subfield><subfield code="c">print; print</subfield><subfield code="9">978-3-11-025043-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110253863</subfield><subfield code="c">Electronic book text</subfield><subfield code="9">978-3-11-025386-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110253863</subfield><subfield code="9">978-3-11-025386-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783112188309</subfield><subfield code="9">978-3-11-218830-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110253863</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)852378124</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042348214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.325</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pflug, Peter</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)1018111301</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant distances and metrics in complex analysis</subfield><subfield code="c">Peter Pflug; Marek Jarnicki</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. Aufl., 2nd ext. ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (PDF-Version: XVII, 861 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">9</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Marek Jarnicki, Jagiellonian University, Krakow, Poland; Peter Pflug, Carl von Ossietzky Universität, Oldenburg, Germany</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudometrik</subfield><subfield code="0">(DE-588)4176150-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoabstand</subfield><subfield code="0">(DE-588)4335987-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Invariants</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Metric spaces</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Pseudodistances</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Pseudoabstand</subfield><subfield code="0">(DE-588)4335987-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Pseudometrik</subfield><subfield code="0">(DE-588)4176150-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Komplexe Funktion</subfield><subfield code="0">(DE-588)4217733-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pseudoabstand</subfield><subfield code="0">(DE-588)4335987-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Invariante</subfield><subfield code="0">(DE-588)4128781-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jarnicki, Marek</subfield><subfield code="d">1952-</subfield><subfield code="0">(DE-588)101811095X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">de Gruyter expositions in mathematics</subfield><subfield code="v">9</subfield><subfield code="w">(DE-604)BV044998893</subfield><subfield code="9">9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110253863</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110253863</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110253863&searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-EXM</subfield><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027784695</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042348214 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:05Z |
institution | BVB |
isbn | 9783110250435 9783110253863 9783112188309 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027784695 |
oclc_num | 852378124 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-859 DE-860 DE-Aug4 DE-739 DE-83 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-898 DE-BY-UBR DE-859 DE-860 DE-Aug4 DE-739 DE-83 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (PDF-Version: XVII, 861 S.) |
psigel | ZDB-23-EXM ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | de Gruyter |
record_format | marc |
series | de Gruyter expositions in mathematics |
series2 | de Gruyter expositions in mathematics |
spelling | Pflug, Peter 1943- (DE-588)1018111301 aut Invariant distances and metrics in complex analysis Peter Pflug; Marek Jarnicki 2. Aufl., 2nd ext. ed Berlin [u.a.] de Gruyter [2013] © 2013 1 Online-Ressource (PDF-Version: XVII, 861 S.) txt rdacontent c rdamedia cr rdacarrier de Gruyter expositions in mathematics 9 Description based upon print version of record Biographical note: Marek Jarnicki, Jagiellonian University, Krakow, Poland; Peter Pflug, Carl von Ossietzky Universität, Oldenburg, Germany Main description: As in the field of "Invariant Distances and Metrics in Complex Analysis" there was and is a continuous progress this is the second extended edition of the corresponding monograph. This comprehensive book is about the study of invariant pseudodistances (non-negative functions on pairs of points) and pseudometrics (non-negative functions on the tangent bundle) in several complex variables. It is an overview over a highly active research area at the borderline between complex analysis, functional analysis and differential geometry. New chapters are covering the Wu, Bergman and several other metrics Pseudometrik (DE-588)4176150-9 gnd rswk-swf Pseudoabstand (DE-588)4335987-5 gnd rswk-swf Invariante (DE-588)4128781-2 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Metrischer Raum (DE-588)4169745-5 gnd rswk-swf Komplexe Funktion (DE-588)4217733-9 gnd rswk-swf Functions of complex variables Invariants Metric spaces Pseudodistances Electronic books Funktionentheorie (DE-588)4018935-1 s Pseudoabstand (DE-588)4335987-5 s Invariante (DE-588)4128781-2 s Metrischer Raum (DE-588)4169745-5 s Pseudometrik (DE-588)4176150-9 s 1\p DE-604 Komplexe Funktion (DE-588)4217733-9 s 2\p DE-604 Jarnicki, Marek 1952- (DE-588)101811095X aut de Gruyter expositions in mathematics 9 (DE-604)BV044998893 9 https://doi.org/10.1515/9783110253863 Verlag Volltext http://www.degruyter.com/doi/book/10.1515/9783110253863 Verlag Volltext http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110253863&searchTitles=true Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Pflug, Peter 1943- Jarnicki, Marek 1952- Invariant distances and metrics in complex analysis de Gruyter expositions in mathematics Pseudometrik (DE-588)4176150-9 gnd Pseudoabstand (DE-588)4335987-5 gnd Invariante (DE-588)4128781-2 gnd Funktionentheorie (DE-588)4018935-1 gnd Metrischer Raum (DE-588)4169745-5 gnd Komplexe Funktion (DE-588)4217733-9 gnd |
subject_GND | (DE-588)4176150-9 (DE-588)4335987-5 (DE-588)4128781-2 (DE-588)4018935-1 (DE-588)4169745-5 (DE-588)4217733-9 |
title | Invariant distances and metrics in complex analysis |
title_auth | Invariant distances and metrics in complex analysis |
title_exact_search | Invariant distances and metrics in complex analysis |
title_full | Invariant distances and metrics in complex analysis Peter Pflug; Marek Jarnicki |
title_fullStr | Invariant distances and metrics in complex analysis Peter Pflug; Marek Jarnicki |
title_full_unstemmed | Invariant distances and metrics in complex analysis Peter Pflug; Marek Jarnicki |
title_short | Invariant distances and metrics in complex analysis |
title_sort | invariant distances and metrics in complex analysis |
topic | Pseudometrik (DE-588)4176150-9 gnd Pseudoabstand (DE-588)4335987-5 gnd Invariante (DE-588)4128781-2 gnd Funktionentheorie (DE-588)4018935-1 gnd Metrischer Raum (DE-588)4169745-5 gnd Komplexe Funktion (DE-588)4217733-9 gnd |
topic_facet | Pseudometrik Pseudoabstand Invariante Funktionentheorie Metrischer Raum Komplexe Funktion |
url | https://doi.org/10.1515/9783110253863 http://www.degruyter.com/doi/book/10.1515/9783110253863 http://www.degruyter.com/search?f_0=isbnissn&q_0=9783110253863&searchTitles=true |
volume_link | (DE-604)BV044998893 |
work_keys_str_mv | AT pflugpeter invariantdistancesandmetricsincomplexanalysis AT jarnickimarek invariantdistancesandmetricsincomplexanalysis |