Theory of uniform approximation of functions by polynomials:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2008
|
Schlagworte: | |
Online-Zugang: | DE-188 Volltext |
Beschreibung: | Biographical note: Vladislav K. Dzyadyk and Igor A. Shevchuk, National Taras Shevchenko University of Kiev, Ukraine Main description: A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions Review text: "The book could be of interest for all who work in approximation theory and related fields; it should not be overlooked by university libraries."In: Ems Newsletter 3/2009 "It is useful for students interested in uniform approximation theory, and it can be used as a reference book for researchers as well."In: L'Enseignement Mathématique 2/2008 |
Beschreibung: | 1 Online-Ressource (XV, 480 S.) |
ISBN: | 9783110209082 |
DOI: | 10.1515/9783110208245 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV042347054 | ||
003 | DE-604 | ||
005 | 20230216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2008 |||| o||u| ||||||eng d | ||
020 | |a 9783110209082 |9 978-3-11-020908-2 | ||
024 | 7 | |a 10.1515/9783110208245 |2 doi | |
035 | |a (OCoLC)703226792 | ||
035 | |a (DE-599)BVBBV042347054 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 |a DE-188 | ||
082 | 0 | |a 510 | |
100 | 1 | |a Dzjadyk, Vladislav Kirillovič |d 1919-1998 |e Verfasser |0 (DE-588)173116930 |4 aut | |
245 | 1 | 0 | |a Theory of uniform approximation of functions by polynomials |c Vladislav K. Dzyadyk ; Igor A. Shevchuk |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2008 | |
300 | |a 1 Online-Ressource (XV, 480 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Biographical note: Vladislav K. Dzyadyk and Igor A. Shevchuk, National Taras Shevchenko University of Kiev, Ukraine | ||
500 | |a Main description: A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions | ||
500 | |a Review text: "The book could be of interest for all who work in approximation theory and related fields; it should not be overlooked by university libraries."In: Ems Newsletter 3/2009 "It is useful for students interested in uniform approximation theory, and it can be used as a reference book for researchers as well."In: L'Enseignement Mathématique 2/2008 | ||
600 | 1 | 7 | |a Peetre, Jaak |d 1935-2019 |0 (DE-588)12393771X |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interdisziplinarität |0 (DE-588)4449808-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierungsproblem |0 (DE-588)4390818-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krankheit |0 (DE-588)4032844-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Čebyšev-Approximation |0 (DE-588)4147433-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kultur |0 (DE-588)4125698-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bibliografie |0 (DE-588)4006432-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Richtigkeit von Ergebnissen |0 (DE-588)4127444-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gesundheit |0 (DE-588)4020754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Lund |2 gnd-content | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Čebyšev-Approximation |0 (DE-588)4147433-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gesundheit |0 (DE-588)4020754-7 |D s |
689 | 1 | 1 | |a Kultur |0 (DE-588)4125698-0 |D s |
689 | 1 | 2 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Gesundheit |0 (DE-588)4020754-7 |D s |
689 | 2 | 1 | |a Interdisziplinarität |0 (DE-588)4449808-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Peetre, Jaak |d 1935-2019 |0 (DE-588)12393771X |D p |
689 | 3 | 1 | |a Bibliografie |0 (DE-588)4006432-3 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Krankheit |0 (DE-588)4032844-2 |D s |
689 | 4 | 1 | |a Interdisziplinarität |0 (DE-588)4449808-1 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 5 | 1 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |D s |
689 | 5 | |5 DE-604 | |
689 | 6 | 0 | |a Optimierungsproblem |0 (DE-588)4390818-4 |D s |
689 | 6 | 1 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |D s |
689 | 6 | |5 DE-604 | |
689 | 7 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 7 | 1 | |a Richtigkeit von Ergebnissen |0 (DE-588)4127444-1 |D s |
689 | 7 | |5 DE-604 | |
689 | 8 | 0 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 8 | |5 DE-604 | |
689 | 9 | 0 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 9 | |5 DE-604 | |
700 | 1 | |a Ševčuk, Igor A. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-020824-5 |w (DE-604)BV035980607 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110208245 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMN |a ZDB-23-GMA |a ZDB-23-GBA | ||
940 | 1 | |n cgwrk-korr | |
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027783535 | |
966 | e | |u https://doi.org/10.1515/9783110208245 |l DE-188 |p ZDB-23-DMN |q ZDB-23-DMN 2011 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1807322260884684800 |
---|---|
adam_text | |
any_adam_object | |
author | Dzjadyk, Vladislav Kirillovič 1919-1998 Ševčuk, Igor A. |
author_GND | (DE-588)173116930 |
author_facet | Dzjadyk, Vladislav Kirillovič 1919-1998 Ševčuk, Igor A. |
author_role | aut aut |
author_sort | Dzjadyk, Vladislav Kirillovič 1919-1998 |
author_variant | v k d vk vkd i a š ia iaš |
building | Verbundindex |
bvnumber | BV042347054 |
collection | ZDB-23-DGG ZDB-23-DMN ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)703226792 (DE-599)BVBBV042347054 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110208245 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV042347054</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230216</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110209082</subfield><subfield code="9">978-3-11-020908-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110208245</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)703226792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042347054</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzjadyk, Vladislav Kirillovič</subfield><subfield code="d">1919-1998</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173116930</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of uniform approximation of functions by polynomials</subfield><subfield code="c">Vladislav K. Dzyadyk ; Igor A. Shevchuk</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 480 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: Vladislav K. Dzyadyk and Igor A. Shevchuk, National Taras Shevchenko University of Kiev, Ukraine</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Review text: "The book could be of interest for all who work in approximation theory and related fields; it should not be overlooked by university libraries."In: Ems Newsletter 3/2009 "It is useful for students interested in uniform approximation theory, and it can be used as a reference book for researchers as well."In: L'Enseignement Mathématique 2/2008</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Peetre, Jaak</subfield><subfield code="d">1935-2019</subfield><subfield code="0">(DE-588)12393771X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierungsproblem</subfield><subfield code="0">(DE-588)4390818-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krankheit</subfield><subfield code="0">(DE-588)4032844-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Čebyšev-Approximation</subfield><subfield code="0">(DE-588)4147433-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kultur</subfield><subfield code="0">(DE-588)4125698-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Richtigkeit von Ergebnissen</subfield><subfield code="0">(DE-588)4127444-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Lund</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Čebyšev-Approximation</subfield><subfield code="0">(DE-588)4147433-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kultur</subfield><subfield code="0">(DE-588)4125698-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Peetre, Jaak</subfield><subfield code="d">1935-2019</subfield><subfield code="0">(DE-588)12393771X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Krankheit</subfield><subfield code="0">(DE-588)4032844-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Optimierungsproblem</subfield><subfield code="0">(DE-588)4390818-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2="1"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2="1"><subfield code="a">Richtigkeit von Ergebnissen</subfield><subfield code="0">(DE-588)4127444-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="9" ind2="0"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="9" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ševčuk, Igor A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-020824-5</subfield><subfield code="w">(DE-604)BV035980607</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110208245</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMN</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="n">cgwrk-korr</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027783535</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110208245</subfield><subfield code="l">DE-188</subfield><subfield code="p">ZDB-23-DMN</subfield><subfield code="q">ZDB-23-DMN 2011</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2000 Lund gnd-content (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Festschrift Konferenzschrift 2000 Lund Lehrbuch |
id | DE-604.BV042347054 |
illustrated | Not Illustrated |
indexdate | 2024-08-14T00:53:41Z |
institution | BVB |
isbn | 9783110209082 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027783535 |
oclc_num | 703226792 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 |
physical | 1 Online-Ressource (XV, 480 S.) |
psigel | ZDB-23-DGG ZDB-23-DMN ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 ZDB-23-DMN ZDB-23-DMN 2011 |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | de Gruyter |
record_format | marc |
spelling | Dzjadyk, Vladislav Kirillovič 1919-1998 Verfasser (DE-588)173116930 aut Theory of uniform approximation of functions by polynomials Vladislav K. Dzyadyk ; Igor A. Shevchuk Berlin [u.a.] de Gruyter 2008 1 Online-Ressource (XV, 480 S.) txt rdacontent c rdamedia cr rdacarrier Biographical note: Vladislav K. Dzyadyk and Igor A. Shevchuk, National Taras Shevchenko University of Kiev, Ukraine Main description: A thorough, self-contained and easily accessible treatment of the theory on the polynomial best approximation of functions with respect to maximum norms. The topics include Chebychev theory, Weierstraß theorems, smoothness of functions, and continuation of functions Review text: "The book could be of interest for all who work in approximation theory and related fields; it should not be overlooked by university libraries."In: Ems Newsletter 3/2009 "It is useful for students interested in uniform approximation theory, and it can be used as a reference book for researchers as well."In: L'Enseignement Mathématique 2/2008 Peetre, Jaak 1935-2019 (DE-588)12393771X gnd rswk-swf Geschichte gnd rswk-swf Approximationsalgorithmus (DE-588)4500954-5 gnd rswk-swf Interdisziplinarität (DE-588)4449808-1 gnd rswk-swf Optimierungsproblem (DE-588)4390818-4 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Krankheit (DE-588)4032844-2 gnd rswk-swf Čebyšev-Approximation (DE-588)4147433-8 gnd rswk-swf Diskreter Bewertungsring (DE-588)4483625-9 gnd rswk-swf Kultur (DE-588)4125698-0 gnd rswk-swf Bibliografie (DE-588)4006432-3 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd rswk-swf Gesundheit (DE-588)4020754-7 gnd rswk-swf Funktionenraum (DE-588)4134834-5 gnd rswk-swf (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2000 Lund gnd-content (DE-588)4123623-3 Lehrbuch gnd-content Čebyšev-Approximation (DE-588)4147433-8 s DE-604 Gesundheit (DE-588)4020754-7 s Kultur (DE-588)4125698-0 s Geschichte z Interdisziplinarität (DE-588)4449808-1 s Peetre, Jaak 1935-2019 (DE-588)12393771X p Bibliografie (DE-588)4006432-3 s Krankheit (DE-588)4032844-2 s Modultheorie (DE-588)4170336-4 s Diskreter Bewertungsring (DE-588)4483625-9 s Optimierungsproblem (DE-588)4390818-4 s Approximationsalgorithmus (DE-588)4500954-5 s Numerische Mathematik (DE-588)4042805-9 s Richtigkeit von Ergebnissen (DE-588)4127444-1 s Interpolation (DE-588)4162121-9 s Funktionenraum (DE-588)4134834-5 s Ševčuk, Igor A. Verfasser aut Erscheint auch als Druck-Ausgabe 978-3-11-020824-5 (DE-604)BV035980607 https://doi.org/10.1515/9783110208245 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Dzjadyk, Vladislav Kirillovič 1919-1998 Ševčuk, Igor A. Theory of uniform approximation of functions by polynomials Peetre, Jaak 1935-2019 (DE-588)12393771X gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Interdisziplinarität (DE-588)4449808-1 gnd Optimierungsproblem (DE-588)4390818-4 gnd Modultheorie (DE-588)4170336-4 gnd Krankheit (DE-588)4032844-2 gnd Čebyšev-Approximation (DE-588)4147433-8 gnd Diskreter Bewertungsring (DE-588)4483625-9 gnd Kultur (DE-588)4125698-0 gnd Bibliografie (DE-588)4006432-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Interpolation (DE-588)4162121-9 gnd Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd Gesundheit (DE-588)4020754-7 gnd Funktionenraum (DE-588)4134834-5 gnd |
subject_GND | (DE-588)12393771X (DE-588)4500954-5 (DE-588)4449808-1 (DE-588)4390818-4 (DE-588)4170336-4 (DE-588)4032844-2 (DE-588)4147433-8 (DE-588)4483625-9 (DE-588)4125698-0 (DE-588)4006432-3 (DE-588)4042805-9 (DE-588)4162121-9 (DE-588)4127444-1 (DE-588)4020754-7 (DE-588)4134834-5 (DE-588)4016928-5 (DE-588)1071861417 (DE-588)4123623-3 |
title | Theory of uniform approximation of functions by polynomials |
title_auth | Theory of uniform approximation of functions by polynomials |
title_exact_search | Theory of uniform approximation of functions by polynomials |
title_full | Theory of uniform approximation of functions by polynomials Vladislav K. Dzyadyk ; Igor A. Shevchuk |
title_fullStr | Theory of uniform approximation of functions by polynomials Vladislav K. Dzyadyk ; Igor A. Shevchuk |
title_full_unstemmed | Theory of uniform approximation of functions by polynomials Vladislav K. Dzyadyk ; Igor A. Shevchuk |
title_short | Theory of uniform approximation of functions by polynomials |
title_sort | theory of uniform approximation of functions by polynomials |
topic | Peetre, Jaak 1935-2019 (DE-588)12393771X gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Interdisziplinarität (DE-588)4449808-1 gnd Optimierungsproblem (DE-588)4390818-4 gnd Modultheorie (DE-588)4170336-4 gnd Krankheit (DE-588)4032844-2 gnd Čebyšev-Approximation (DE-588)4147433-8 gnd Diskreter Bewertungsring (DE-588)4483625-9 gnd Kultur (DE-588)4125698-0 gnd Bibliografie (DE-588)4006432-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Interpolation (DE-588)4162121-9 gnd Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd Gesundheit (DE-588)4020754-7 gnd Funktionenraum (DE-588)4134834-5 gnd |
topic_facet | Peetre, Jaak 1935-2019 Approximationsalgorithmus Interdisziplinarität Optimierungsproblem Modultheorie Krankheit Čebyšev-Approximation Diskreter Bewertungsring Kultur Bibliografie Numerische Mathematik Interpolation Richtigkeit von Ergebnissen Gesundheit Funktionenraum Festschrift Konferenzschrift 2000 Lund Lehrbuch |
url | https://doi.org/10.1515/9783110208245 |
work_keys_str_mv | AT dzjadykvladislavkirillovic theoryofuniformapproximationoffunctionsbypolynomials AT sevcukigora theoryofuniformapproximationoffunctionsbypolynomials |