Modules over discrete valuation domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2008
|
Schriftenreihe: | De Gruyter expositions in mathematics
43 |
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | Description based upon print version of record This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra |
Beschreibung: | 1 Online-Ressource (368 p.) |
ISBN: | 9783110205787 9783110209082 |
DOI: | 10.1515/9783110205787 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042347009 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2008 xx o|||| 00||| eng d | ||
020 | |a 9783110205787 |9 978-3-11-020578-7 | ||
020 | |a 9783110209082 |9 978-3-11-020908-2 | ||
024 | 7 | |a 10.1515/9783110205787 |2 doi | |
035 | |a (OCoLC)471132559 | ||
035 | |a (DE-599)BVBBV042347009 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 | ||
082 | 0 | |a 510.82 | |
100 | 1 | |a Krylov, Piotr A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modules over discrete valuation domains |c by Piotr A. Krylov and Askar A. Tuganbaev |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2008 | |
300 | |a 1 Online-Ressource (368 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter expositions in mathematics |v 43 | |
500 | |a Description based upon print version of record | ||
500 | |a This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra | ||
600 | 1 | 7 | |a Peetre, Jaak |d 1935-2019 |0 (DE-588)12393771X |2 gnd |9 rswk-swf |
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 0 | 7 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interdisziplinarität |0 (DE-588)4449808-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimierungsproblem |0 (DE-588)4390818-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Krankheit |0 (DE-588)4032844-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Čebyšev-Approximation |0 (DE-588)4147433-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kultur |0 (DE-588)4125698-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bibliografie |0 (DE-588)4006432-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interpolation |0 (DE-588)4162121-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Richtigkeit von Ergebnissen |0 (DE-588)4127444-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gesundheit |0 (DE-588)4020754-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
655 | 7 | |0 (DE-588)4016928-5 |a Festschrift |2 gnd-content | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2000 |z Lund |2 gnd-content | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |D s |
689 | 0 | 1 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gesundheit |0 (DE-588)4020754-7 |D s |
689 | 1 | 1 | |a Kultur |0 (DE-588)4125698-0 |D s |
689 | 1 | 2 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Gesundheit |0 (DE-588)4020754-7 |D s |
689 | 2 | 1 | |a Interdisziplinarität |0 (DE-588)4449808-1 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Peetre, Jaak |d 1935-2019 |0 (DE-588)12393771X |D p |
689 | 3 | 1 | |a Bibliografie |0 (DE-588)4006432-3 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Interdisziplinarität |0 (DE-588)4449808-1 |D s |
689 | 4 | 1 | |a Krankheit |0 (DE-588)4032844-2 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Approximationsalgorithmus |0 (DE-588)4500954-5 |D s |
689 | 5 | 1 | |a Optimierungsproblem |0 (DE-588)4390818-4 |D s |
689 | 5 | |5 DE-604 | |
689 | 6 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 6 | 1 | |a Richtigkeit von Ergebnissen |0 (DE-588)4127444-1 |D s |
689 | 6 | |5 DE-604 | |
689 | 7 | 0 | |a Čebyšev-Approximation |0 (DE-588)4147433-8 |D s |
689 | 7 | |5 DE-604 | |
689 | 8 | 0 | |a Interpolation |0 (DE-588)4162121-9 |D s |
689 | 8 | |5 DE-604 | |
689 | 9 | 0 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 9 | |5 DE-604 | |
700 | 1 | |a Tuganbaev, Askar A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110205787 |x Verlag |3 Volltext |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110205787 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-GMA | ||
912 | |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027783490 |
Datensatz im Suchindex
_version_ | 1820889707295277056 |
---|---|
adam_text | |
any_adam_object | |
author | Krylov, Piotr A. |
author_facet | Krylov, Piotr A. |
author_role | aut |
author_sort | Krylov, Piotr A. |
author_variant | p a k pa pak |
building | Verbundindex |
bvnumber | BV042347009 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA |
ctrlnum | (OCoLC)471132559 (DE-599)BVBBV042347009 |
dewey-full | 510.82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.82 |
dewey-search | 510.82 |
dewey-sort | 3510.82 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110205787 |
era | Geschichte gnd |
era_facet | Geschichte |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV042347009</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2008 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110205787</subfield><subfield code="9">978-3-11-020578-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110209082</subfield><subfield code="9">978-3-11-020908-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110205787</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)471132559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042347009</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.82</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krylov, Piotr A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modules over discrete valuation domains</subfield><subfield code="c">by Piotr A. Krylov and Askar A. Tuganbaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (368 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">43</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based upon print version of record</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Peetre, Jaak</subfield><subfield code="d">1935-2019</subfield><subfield code="0">(DE-588)12393771X</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierungsproblem</subfield><subfield code="0">(DE-588)4390818-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Krankheit</subfield><subfield code="0">(DE-588)4032844-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Čebyšev-Approximation</subfield><subfield code="0">(DE-588)4147433-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kultur</subfield><subfield code="0">(DE-588)4125698-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Richtigkeit von Ergebnissen</subfield><subfield code="0">(DE-588)4127444-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4016928-5</subfield><subfield code="a">Festschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2000</subfield><subfield code="z">Lund</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kultur</subfield><subfield code="0">(DE-588)4125698-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gesundheit</subfield><subfield code="0">(DE-588)4020754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Peetre, Jaak</subfield><subfield code="d">1935-2019</subfield><subfield code="0">(DE-588)12393771X</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Interdisziplinarität</subfield><subfield code="0">(DE-588)4449808-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Krankheit</subfield><subfield code="0">(DE-588)4032844-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Approximationsalgorithmus</subfield><subfield code="0">(DE-588)4500954-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Optimierungsproblem</subfield><subfield code="0">(DE-588)4390818-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2="1"><subfield code="a">Richtigkeit von Ergebnissen</subfield><subfield code="0">(DE-588)4127444-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Čebyšev-Approximation</subfield><subfield code="0">(DE-588)4147433-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="8" ind2="0"><subfield code="a">Interpolation</subfield><subfield code="0">(DE-588)4162121-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="8" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="9" ind2="0"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="9" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110205787</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110205787</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027783490</subfield></datafield></record></collection> |
genre | (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2000 Lund gnd-content (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Festschrift Konferenzschrift 2000 Lund Lehrbuch |
id | DE-604.BV042347009 |
illustrated | Not Illustrated |
indexdate | 2025-01-10T19:02:26Z |
institution | BVB |
isbn | 9783110205787 9783110209082 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027783490 |
oclc_num | 471132559 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (368 p.) |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | de Gruyter |
record_format | marc |
series2 | De Gruyter expositions in mathematics |
spelling | Krylov, Piotr A. Verfasser aut Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev Berlin [u.a.] de Gruyter 2008 1 Online-Ressource (368 p.) txt rdacontent c rdamedia cr rdacarrier De Gruyter expositions in mathematics 43 Description based upon print version of record This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra Peetre, Jaak 1935-2019 (DE-588)12393771X gnd rswk-swf Geschichte gnd rswk-swf Approximationsalgorithmus (DE-588)4500954-5 gnd rswk-swf Interdisziplinarität (DE-588)4449808-1 gnd rswk-swf Optimierungsproblem (DE-588)4390818-4 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Krankheit (DE-588)4032844-2 gnd rswk-swf Čebyšev-Approximation (DE-588)4147433-8 gnd rswk-swf Diskreter Bewertungsring (DE-588)4483625-9 gnd rswk-swf Kultur (DE-588)4125698-0 gnd rswk-swf Bibliografie (DE-588)4006432-3 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Interpolation (DE-588)4162121-9 gnd rswk-swf Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd rswk-swf Gesundheit (DE-588)4020754-7 gnd rswk-swf Funktionenraum (DE-588)4134834-5 gnd rswk-swf Electronic books (DE-588)4016928-5 Festschrift gnd-content (DE-588)1071861417 Konferenzschrift 2000 Lund gnd-content (DE-588)4123623-3 Lehrbuch gnd-content Diskreter Bewertungsring (DE-588)4483625-9 s Modultheorie (DE-588)4170336-4 s 1\p DE-604 Gesundheit (DE-588)4020754-7 s Kultur (DE-588)4125698-0 s Geschichte z DE-604 Interdisziplinarität (DE-588)4449808-1 s Peetre, Jaak 1935-2019 (DE-588)12393771X p Bibliografie (DE-588)4006432-3 s Krankheit (DE-588)4032844-2 s Approximationsalgorithmus (DE-588)4500954-5 s Optimierungsproblem (DE-588)4390818-4 s Numerische Mathematik (DE-588)4042805-9 s Richtigkeit von Ergebnissen (DE-588)4127444-1 s Čebyšev-Approximation (DE-588)4147433-8 s Interpolation (DE-588)4162121-9 s Funktionenraum (DE-588)4134834-5 s Tuganbaev, Askar A. Sonstige oth https://doi.org/10.1515/9783110205787 Verlag Volltext http://www.degruyter.com/doi/book/10.1515/9783110205787 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krylov, Piotr A. Modules over discrete valuation domains Peetre, Jaak 1935-2019 (DE-588)12393771X gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Interdisziplinarität (DE-588)4449808-1 gnd Optimierungsproblem (DE-588)4390818-4 gnd Modultheorie (DE-588)4170336-4 gnd Krankheit (DE-588)4032844-2 gnd Čebyšev-Approximation (DE-588)4147433-8 gnd Diskreter Bewertungsring (DE-588)4483625-9 gnd Kultur (DE-588)4125698-0 gnd Bibliografie (DE-588)4006432-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Interpolation (DE-588)4162121-9 gnd Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd Gesundheit (DE-588)4020754-7 gnd Funktionenraum (DE-588)4134834-5 gnd |
subject_GND | (DE-588)12393771X (DE-588)4500954-5 (DE-588)4449808-1 (DE-588)4390818-4 (DE-588)4170336-4 (DE-588)4032844-2 (DE-588)4147433-8 (DE-588)4483625-9 (DE-588)4125698-0 (DE-588)4006432-3 (DE-588)4042805-9 (DE-588)4162121-9 (DE-588)4127444-1 (DE-588)4020754-7 (DE-588)4134834-5 (DE-588)4016928-5 (DE-588)1071861417 (DE-588)4123623-3 |
title | Modules over discrete valuation domains |
title_auth | Modules over discrete valuation domains |
title_exact_search | Modules over discrete valuation domains |
title_full | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_fullStr | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_full_unstemmed | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_short | Modules over discrete valuation domains |
title_sort | modules over discrete valuation domains |
topic | Peetre, Jaak 1935-2019 (DE-588)12393771X gnd Approximationsalgorithmus (DE-588)4500954-5 gnd Interdisziplinarität (DE-588)4449808-1 gnd Optimierungsproblem (DE-588)4390818-4 gnd Modultheorie (DE-588)4170336-4 gnd Krankheit (DE-588)4032844-2 gnd Čebyšev-Approximation (DE-588)4147433-8 gnd Diskreter Bewertungsring (DE-588)4483625-9 gnd Kultur (DE-588)4125698-0 gnd Bibliografie (DE-588)4006432-3 gnd Numerische Mathematik (DE-588)4042805-9 gnd Interpolation (DE-588)4162121-9 gnd Richtigkeit von Ergebnissen (DE-588)4127444-1 gnd Gesundheit (DE-588)4020754-7 gnd Funktionenraum (DE-588)4134834-5 gnd |
topic_facet | Peetre, Jaak 1935-2019 Approximationsalgorithmus Interdisziplinarität Optimierungsproblem Modultheorie Krankheit Čebyšev-Approximation Diskreter Bewertungsring Kultur Bibliografie Numerische Mathematik Interpolation Richtigkeit von Ergebnissen Gesundheit Funktionenraum Festschrift Konferenzschrift 2000 Lund Lehrbuch |
url | https://doi.org/10.1515/9783110205787 http://www.degruyter.com/doi/book/10.1515/9783110205787 |
work_keys_str_mv | AT krylovpiotra modulesoverdiscretevaluationdomains AT tuganbaevaskara modulesoverdiscretevaluationdomains |