A posteriori estimates for partial differential equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2008
|
Schriftenreihe: | Radon series on computational and applied mathematics
4 |
Schlagworte: | |
Online-Zugang: | FUBA1 Volltext |
Beschreibung: | Includes bibliographical references (p. [291]-311) and index This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods |
Beschreibung: | 1 Online-Ressource (XI, 316 S.) |
ISBN: | 9783110191530 9783110203042 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042346949 | ||
003 | DE-604 | ||
005 | 20221213 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2008 |||| o||u| ||||||eng d | ||
020 | |a 9783110191530 |9 978-3-11-019153-0 | ||
020 | |a 9783110203042 |9 978-3-11-020304-2 | ||
024 | 7 | |a 10.1515/9783110203042 |2 doi | |
035 | |a (OCoLC)301965291 | ||
035 | |a (DE-599)BVBBV042346949 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-706 |a DE-703 |a DE-1043 |a DE-858 |a DE-19 |a DE-188 |a DE-83 | ||
082 | 0 | |a 515/.353 | |
082 | 0 | |a 510 | |
084 | |a SK 500 |0 (DE-625)143243: |2 rvk | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Repin, Sergej Igorevič |d 1953- |e Verfasser |0 (DE-588)1089800177 |4 aut | |
245 | 1 | 0 | |a A posteriori estimates for partial differential equations |c Sergey Repin |
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2008 | |
300 | |a 1 Online-Ressource (XI, 316 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Radon series on computational and applied mathematics |v 4 | |
500 | |a Includes bibliographical references (p. [291]-311) and index | ||
500 | |a This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods | ||
650 | 7 | |a Partielle Differentialgleichung |2 gnd | |
650 | 7 | |a A-posteriori-Abschätzung |2 gnd | |
650 | 4 | |a Differential equations, Partial | |
650 | 4 | |a Error analysis (Mathematics) | |
650 | 0 | 7 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-019153-0 |
830 | 0 | |a Radon series on computational and applied mathematics |v 4 |w (DE-604)BV045093055 |9 4 | |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110203042 |x Verlag |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GMA |a ZDB-23-GBA |a ZDB-23-DMN | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
940 | 1 | |q ZDB-23-GMA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027783430 | ||
966 | e | |u http://www.degruyter.com/doi/book/10.1515/9783110203042 |l FUBA1 |p ZDB-23-DMN |q ZDB-23-DMN 2011 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804152967934246913 |
---|---|
any_adam_object | |
author | Repin, Sergej Igorevič 1953- |
author_GND | (DE-588)1089800177 |
author_facet | Repin, Sergej Igorevič 1953- |
author_role | aut |
author_sort | Repin, Sergej Igorevič 1953- |
author_variant | s i r si sir |
building | Verbundindex |
bvnumber | BV042346949 |
classification_rvk | SK 500 SK 540 |
collection | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-DMN |
ctrlnum | (OCoLC)301965291 (DE-599)BVBBV042346949 |
dewey-full | 515/.353 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis 510 - Mathematics |
dewey-raw | 515/.353 510 |
dewey-search | 515/.353 510 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02956nmm a2200625zcb4500</leader><controlfield tag="001">BV042346949</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110191530</subfield><subfield code="9">978-3-11-019153-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110203042</subfield><subfield code="9">978-3-11-020304-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110203042</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)301965291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042346949</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="0">(DE-625)143243:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Repin, Sergej Igorevič</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089800177</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A posteriori estimates for partial differential equations</subfield><subfield code="c">Sergey Repin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 316 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Radon series on computational and applied mathematics</subfield><subfield code="v">4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [291]-311) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Error analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-019153-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Radon series on computational and applied mathematics</subfield><subfield code="v">4</subfield><subfield code="w">(DE-604)BV045093055</subfield><subfield code="9">4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110203042</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GMA</subfield><subfield code="a">ZDB-23-GBA</subfield><subfield code="a">ZDB-23-DMN</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GMA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027783430</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110203042</subfield><subfield code="l">FUBA1</subfield><subfield code="p">ZDB-23-DMN</subfield><subfield code="q">ZDB-23-DMN 2011</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042346949 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:03Z |
institution | BVB |
isbn | 9783110191530 9783110203042 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027783430 |
oclc_num | 301965291 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 DE-83 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-706 DE-703 DE-1043 DE-858 DE-19 DE-BY-UBM DE-188 DE-83 |
physical | 1 Online-Ressource (XI, 316 S.) |
psigel | ZDB-23-DGG ZDB-23-GMA ZDB-23-GBA ZDB-23-DMN FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 ZDB-23-GMA_2000/2014 ZDB-23-DMN ZDB-23-DMN 2011 |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | de Gruyter |
record_format | marc |
series | Radon series on computational and applied mathematics |
series2 | Radon series on computational and applied mathematics |
spelling | Repin, Sergej Igorevič 1953- Verfasser (DE-588)1089800177 aut A posteriori estimates for partial differential equations Sergey Repin Berlin [u.a.] de Gruyter 2008 1 Online-Ressource (XI, 316 S.) txt rdacontent c rdamedia cr rdacarrier Radon series on computational and applied mathematics 4 Includes bibliographical references (p. [291]-311) and index This book deals with the reliable verification of the accuracy of approximate solutions which is one of the central problems in modern applied analysis. After giving an overview of the methods developed for models based on partial differential equations, the author derives computable a posteriori error estimates by using methods of the theory of partial differential equations and functional analysis. These estimates are applicable to approximate solutions computed by various methods Partielle Differentialgleichung gnd A-posteriori-Abschätzung gnd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s A-posteriori-Abschätzung (DE-588)4346907-3 s DE-604 Erscheint auch als Druck-Ausgabe 978-3-11-019153-0 Radon series on computational and applied mathematics 4 (DE-604)BV045093055 4 http://www.degruyter.com/doi/book/10.1515/9783110203042 Verlag Volltext |
spellingShingle | Repin, Sergej Igorevič 1953- A posteriori estimates for partial differential equations Radon series on computational and applied mathematics Partielle Differentialgleichung gnd A-posteriori-Abschätzung gnd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4346907-3 (DE-588)4044779-0 |
title | A posteriori estimates for partial differential equations |
title_auth | A posteriori estimates for partial differential equations |
title_exact_search | A posteriori estimates for partial differential equations |
title_full | A posteriori estimates for partial differential equations Sergey Repin |
title_fullStr | A posteriori estimates for partial differential equations Sergey Repin |
title_full_unstemmed | A posteriori estimates for partial differential equations Sergey Repin |
title_short | A posteriori estimates for partial differential equations |
title_sort | a posteriori estimates for partial differential equations |
topic | Partielle Differentialgleichung gnd A-posteriori-Abschätzung gnd Differential equations, Partial Error analysis (Mathematics) A-posteriori-Abschätzung (DE-588)4346907-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Partielle Differentialgleichung A-posteriori-Abschätzung Differential equations, Partial Error analysis (Mathematics) |
url | http://www.degruyter.com/doi/book/10.1515/9783110203042 |
volume_link | (DE-604)BV045093055 |
work_keys_str_mv | AT repinsergejigorevic aposterioriestimatesforpartialdifferentialequations |