Knots:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
de Gruyter
2003
|
Ausgabe: | 2., rev. and extended ed |
Schriftenreihe: | De Gruyter studies in mathematics
5 |
Schlagworte: | |
Online-Zugang: | URL des Erstveröffentlichers URL des Erstveröffentlichers |
Beschreibung: | Literaturverzeichnis S. [367] - 505 Main description: This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots. Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics |
Beschreibung: | 1 Online-Ressource (PDF-Datei, 572 p.) |
ISBN: | 9783110198034 |
DOI: | 10.1515/9783110198034 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042346816 | ||
003 | DE-604 | ||
005 | 20220830 | ||
007 | cr|uuu---uuuuu | ||
008 | 150212s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783110198034 |9 978-3-11-019803-4 | ||
024 | 7 | |a 10.1515/9783110198034 |2 doi | |
035 | |a (OCoLC)437191145 | ||
035 | |a (DE-599)BVBBV042346816 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-859 |a DE-860 |a DE-Aug4 |a DE-739 |a DE-1046 |a DE-1043 |a DE-858 |a DE-19 |a DE-706 | ||
082 | 0 | |a 514/.224 | |
084 | |a SK 300 |0 (DE-625)143230: |2 rvk | ||
100 | 1 | |a Burde, Gerhard |d 1931- |e Verfasser |0 (DE-588)143762907 |4 aut | |
245 | 1 | 0 | |a Knots |c Gerhard Burde; Heiner Zieschang |
250 | |a 2., rev. and extended ed | ||
264 | 1 | |a Berlin [u.a.] |b de Gruyter |c 2003 | |
300 | |a 1 Online-Ressource (PDF-Datei, 572 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter studies in mathematics |v 5 | |
500 | |a Literaturverzeichnis S. [367] - 505 | ||
500 | |a Main description: This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots. Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics | ||
650 | 7 | |a 28 |2 gnd | |
650 | 7 | |a Knoten |2 gnd | |
650 | 0 | 7 | |a Knotentheorie |0 (DE-588)4164318-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |2 gnd |9 rswk-swf |
653 | |a Electronic books | ||
689 | 0 | 0 | |a Knotentheorie |0 (DE-588)4164318-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Knoten |g Mathematik |0 (DE-588)4164314-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Zieschang, Heiner |d 1936-2004 |e Sonstige |0 (DE-588)11564489X |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 3-11-017005-1 |
856 | 4 | 0 | |u http://www.degruyter.com/doi/book/10.1515/9783110198034 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110198034 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-GBA | ||
940 | 1 | |q FKE_PDA_DGG | |
940 | 1 | |q FLA_PDA_DGG | |
940 | 1 | |q FHA_PDA_DGG | |
940 | 1 | |q UPA_PDA_DGG | |
940 | 1 | |q FAW_PDA_DGG | |
940 | 1 | |q FCO_PDA_DGG | |
940 | 1 | |q ZDB-23-GBA_2000/2014 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027783297 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804152967898595330 |
---|---|
any_adam_object | |
author | Burde, Gerhard 1931- |
author_GND | (DE-588)143762907 (DE-588)11564489X |
author_facet | Burde, Gerhard 1931- |
author_role | aut |
author_sort | Burde, Gerhard 1931- |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV042346816 |
classification_rvk | SK 300 |
collection | ZDB-23-DGG ZDB-23-GBA |
ctrlnum | (OCoLC)437191145 (DE-599)BVBBV042346816 |
dewey-full | 514/.224 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.224 |
dewey-search | 514/.224 |
dewey-sort | 3514 3224 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1515/9783110198034 |
edition | 2., rev. and extended ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03506nmm a2200613zcb4500</leader><controlfield tag="001">BV042346816</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220830 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150212s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110198034</subfield><subfield code="9">978-3-11-019803-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110198034</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)437191145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042346816</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.224</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 300</subfield><subfield code="0">(DE-625)143230:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burde, Gerhard</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143762907</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knots</subfield><subfield code="c">Gerhard Burde; Heiner Zieschang</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., rev. and extended ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">de Gruyter</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (PDF-Datei, 572 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter studies in mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis S. [367] - 505</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots. Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">28</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Knoten</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Knotentheorie</subfield><subfield code="0">(DE-588)4164318-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Knoten</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4164314-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zieschang, Heiner</subfield><subfield code="d">1936-2004</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)11564489X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">3-11-017005-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9783110198034</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110198034</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-GBA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-GBA_2000/2014</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027783297</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042346816 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:19:03Z |
institution | BVB |
isbn | 9783110198034 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027783297 |
oclc_num | 437191145 |
open_access_boolean | |
owner | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 DE-19 DE-BY-UBM DE-706 |
owner_facet | DE-859 DE-860 DE-Aug4 DE-739 DE-1046 DE-1043 DE-858 DE-19 DE-BY-UBM DE-706 |
physical | 1 Online-Ressource (PDF-Datei, 572 p.) |
psigel | ZDB-23-DGG ZDB-23-GBA FKE_PDA_DGG FLA_PDA_DGG FHA_PDA_DGG UPA_PDA_DGG FAW_PDA_DGG FCO_PDA_DGG ZDB-23-GBA_2000/2014 |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | de Gruyter |
record_format | marc |
series2 | De Gruyter studies in mathematics |
spelling | Burde, Gerhard 1931- Verfasser (DE-588)143762907 aut Knots Gerhard Burde; Heiner Zieschang 2., rev. and extended ed Berlin [u.a.] de Gruyter 2003 1 Online-Ressource (PDF-Datei, 572 p.) txt rdacontent c rdamedia cr rdacarrier De Gruyter studies in mathematics 5 Literaturverzeichnis S. [367] - 505 Main description: This book is an introduction to classical knot theory. Topics covered include: different constructions of knots, knot diagrams, knot groups, fibred knots, characterisation of torus knots, prime decomposition of knots, cyclic coverings and Alexander polynomials and modules together with the free differential calculus, braids, branched coverings and knots, Montesinos links, representations of knot groups, surgery of 3-manifolds and knots. Knot theory has expanded enormously since the first edition of this book published in 1985. A special feature of this second completely revised and extended edition is the introduction to two new constructions of knot invariants, namely the Jones and homfly polynomials and the Vassiliev invariants. The book contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known. The text is accessible to advanced undergraduate and graduate students in mathematics 28 gnd Knoten gnd Knotentheorie (DE-588)4164318-5 gnd rswk-swf Knoten Mathematik (DE-588)4164314-8 gnd rswk-swf Electronic books Knotentheorie (DE-588)4164318-5 s 1\p DE-604 Knoten Mathematik (DE-588)4164314-8 s 2\p DE-604 Zieschang, Heiner 1936-2004 Sonstige (DE-588)11564489X oth Erscheint auch als Druck-Ausgabe, Hardcover 3-11-017005-1 http://www.degruyter.com/doi/book/10.1515/9783110198034 Verlag URL des Erstveröffentlichers Volltext https://doi.org/10.1515/9783110198034 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Burde, Gerhard 1931- Knots 28 gnd Knoten gnd Knotentheorie (DE-588)4164318-5 gnd Knoten Mathematik (DE-588)4164314-8 gnd |
subject_GND | (DE-588)4164318-5 (DE-588)4164314-8 |
title | Knots |
title_auth | Knots |
title_exact_search | Knots |
title_full | Knots Gerhard Burde; Heiner Zieschang |
title_fullStr | Knots Gerhard Burde; Heiner Zieschang |
title_full_unstemmed | Knots Gerhard Burde; Heiner Zieschang |
title_short | Knots |
title_sort | knots |
topic | 28 gnd Knoten gnd Knotentheorie (DE-588)4164318-5 gnd Knoten Mathematik (DE-588)4164314-8 gnd |
topic_facet | 28 Knoten Knotentheorie Knoten Mathematik |
url | http://www.degruyter.com/doi/book/10.1515/9783110198034 https://doi.org/10.1515/9783110198034 |
work_keys_str_mv | AT burdegerhard knots AT zieschangheiner knots |